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ABSTRACT 
 In the last 30 years, medical imaging has become one of the most used 

diagnostic tools in the medical profession. Computed Tomography (CT) and Magnetic 

Resonance Imaging (MRI) technologies have become widely adopted because of their 

ability to capture the human body in a non-invasive manner. A volumetric dataset is a 

series of orthogonal 2D slices captured at a regular interval, typically along the axis of 

the body from the head to the feet. Volume rendering is a computer graphics technique 

that allows volumetric data to be visualized and manipulated as a single 3D object. Iso-

surface rendering, image splatting, shear warp, texture slicing, and raycasting are 

volume rendering methods, each with associated advantages and disadvantages. 

Raycasting is widely regarded as the highest quality renderer of these methods. 

Originally, CT and MRI hardware was limited to providing a single 3D scan of the 

human body. The technology has improved to allow a set of scans capable of capturing 

anatomical movements like a beating heart. The capturing of anatomical data over time 

is referred to as functional imaging. 

Functional MRI (fMRI) is used to capture changes in the human body over time. 

While fMRI’s can be used to capture any anatomical data over time, one of the more 

common uses of fMRI is to capture brain activity. The fMRI scanning process is typically 

broken up into a time consuming high resolution anatomical scan and a series of quick 

low resolution scans capturing activity. The low resolution activity data is mapped onto 

the high resolution anatomical data to show changes over time. 

Academic research has advanced volume rendering and specifically fMRI volume 

rendering. Unfortunately, academic research is typically a one-off solution to a singular 

medical case or set of data, causing any advances to be problem specific as opposed to 

a general capability. Additionally, academic volume renderers are often designed to work 
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on a specific device and operating system under controlled conditions. This prevents 

volume rendering from being used across the ever expanding number of different 

computing devices, such as desktops, laptops, immersive virtual reality systems, and 

mobile computers like phones or tablets.  

This research will investigate the feasibility of creating a generic software 

capability to perform real-time 4D volume rendering, via raycasting, on desktop, mobile, 

and immersive virtual reality platforms.  Implementing a GPU-based 4D volume 

raycasting method for mobile devices will harness the power of the increasing number of 

mobile computational devices being used by medical professionals. Developing support 

for immersive virtual reality can enhance medical professionals’ interpretation of 3D 

physiology with the additional depth information provided by stereoscopic 3D. The 

results of this research will help expand the use of 4D volume rendering beyond the 

traditional desktop computer in the medical field. 

Developing the same 4D volume rendering capabilities across dissimilar platforms 

has many challenges. Each platform relies on their own coding languages, libraries, and 

hardware support. There are tradeoffs between using languages and libraries native to 

each platform and using a generic cross-platform system, such as a game engine. 

Native libraries will generally be more efficient during application run-time, but they 

require different coding implementations for each platform. The decision was made to 

use platform native languages and libraries in this research, whenever practical, in an 

attempt to achieve the best possible frame rates. 

4D volume raycasting provides unique challenges independent of the platform. 

Specifically, fMRI data loading, volume animation, and multiple volume rendering. 

Additionally, real-time raycasting has never been successfully performed on a mobile 

device. Previous research relied on less computationally expensive methods, such as 
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orthogonal texture slicing, to achieve real-time frame rates. These challenges will be 

addressed as the contributions of this research. 

The first contribution was exploring the feasibility of generic functional data input 

across desktop, mobile, and immersive virtual reality. To visualize 4D fMRI data it was 

necessary to build in the capability to read Neuroimaging Informatics Technology 

Initiative (NIfTI) files. The NIfTI format was designed to overcome limitations of 3D file 

formats like DICOM and store functional imagery with a single high-resolution 

anatomical scan and a set of low-resolution anatomical scans. Allowing input of the NIfTI 

binary data required creating custom C++ routines, as no object oriented APIs freely 

available for use existed. The NIfTI input code was built using C++ and the C++ 

Standard Library to be both light weight and cross-platform. 

Multi-volume rendering is another challenge of fMRI data visualization and a 

contribution of this work. fMRI data is typically broken into a single high-resolution 

anatomical volume and a series of low-resolution volumes that capture anatomical 

changes. Visualizing two volumes at the same time is known as multi-volume 

visualization. Therefore, the ability to correctly align and scale the volumes relative to 

each other was necessary. It was also necessary to develop a compositing method to 

combine data from both volumes into a single cohesive representation. 

Three prototype applications were built for the different platforms to test the 

feasibility of 4D volume raycasting. One each for desktop, mobile, and virtual reality. 

Although the backend implementations were required to be different between the three 

platforms, the raycasting functionality and features were identical. Therefore, the same 

fMRI dataset resulted in the same 3D visualization independent of the platform itself. 

Each platform uses the same NIfTI data loader and provides support for dataset coloring 

and windowing (tissue density manipulation). The fMRI data can be viewed changing 
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over time by either animation through the time steps, like a movie, or using an interface 

slider to “scrub” through the different time steps of the data. 

The prototype applications data load times and frame rates were tested to 

determine if they achieved the real-time interaction goal. Real-time interaction was 

defined by achieving 10 frames per second (fps) or better, based on the work of Miller 

[1]. The desktop version was evaluated on a 2013 MacBook Pro running OS X 10.12 

with a 2.6 GHz Intel Core i7 processor, 16 GB of RAM, and a NVIDIA GeForce GT 750M 

graphics card. The immersive application was tested in the C6 CAVE™, a 96 graphics 

node computer cluster comprised of NVIDIA Quadro 6000 graphics cards running Red 

Hat Enterprise Linux. The mobile application was evaluated on a 2016 9.7” iPad Pro 

running iOS 9.3.4. The iPad had a 64-bit Apple A9X dual core processor with 2 GB of 

built in memory. 

Two different fMRI brain activity datasets with different voxel resolutions were used 

as test datasets.  Datasets were tested using both the 3D structural data, the 4D 

functional data, and a combination of the two.  Frame rates for the desktop 

implementation were consistently above 10 fps, indicating that real-time 4D volume 

raycasting is possible on desktop hardware. The mobile and virtual reality platforms 

were able to perform real-time 3D volume raycasting consistently. This is a marked 

improvement for 3D mobile volume raycasting that was previously only able to achieve 

under one frame per second [2]. Both VR and mobile platforms were able to raycast the 

4D only data at real-time frame rates, but did not consistently meet 10 fps when 

rendering both the 3D structural and 4D functional data simultaneously.  However, 7 

frames per second was the lowest frame rate recorded, indicating that hardware 

advances will allow consistent real-time raycasting of 4D fMRI data in the near future.
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CHAPTER 1: INTRODUCTION 
From the earliest cave paintings to today’s boardroom bar charts, visualization 

strategies have been used to tell a story. Computers provide the ability to perform 

complex computations, process large amounts of data, and increasingly visualizations 

are computer generated. Medical data, such as patient charts, medical history, lab test 

results, and medical imaging, is one of the fastest growing sources of data with 150 

exabytes (i.e. 150 billion gigabytes) in 2011 and growing rapidly [3]. The most significant 

contributor to this increase is medical imaging data, such as digital X-rays, Computed 

Tomography (CT), ultrasounds, and Magnetic Resonance Imaging (MRI). 

1.1 Medical Imaging 
Medical imaging began in 1895 when a German physicist by the name of William 

Conrad Rontgen took an X-ray of his wife’s hand [4]. The idea of seeing inside of the 

human body without surgery was a paradigm shift that has since spawned the creation 

of similar imaging techniques such as Magnetic Resonance Imaging (MRI), Computed 

Tomography (CT), Positron Emission Tomography (PET), and Ultrasound to name a few 

of the more commonly used methods. 

Computer Tomography is a medical imaging technology that uses ionizing 

radiation from an x-ray tube to generate cross-sectional slices of the patient’s body [5]. 

The rotating x-ray tube generates a series of 2D slice images along a single axis of 

rotation at consecutive intervals. Medical imaging is the most common application of CT 

scans, but there are other industrial applications as well such as nondestructive 

evaluation of mechanical structures. 

Magnetic Resonance Imaging is a completely different technology used to 

accomplish the same task. Instead of x-rays, the MRI uses strong magnetic fields and 
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radio waves to create the 2D slice images of the patient [6]. The radio waves are used to 

resonate magnetically charged nuclei like Hydrogen and the resulting resonance is used 

to create the images seen in the 2D slices. MRIs have been found to be superior to CT 

scans when viewing soft tissue and CT scans are superior when viewing bone and 

muscle. This is the reason MRI technology is typically used to diagnose issues in the 

brain, cartilage and tendons in joints, and other organs composed of softer tissues. A 

more in-depth description of the underlying MRI technology will be covered in Section 

1.6. 

Today’s CT and MRI scanners are capable of generating 2D slices of the order of 

512 x 512, 1024 x 1024 pixels, and sometimes higher. The higher the number of pixels, 

the more detailed information can be obtained. While 1024 x 1024 resolution is not 

considered high relative to the current TVs, computer monitors, and cell phones, it is 

high for medical imaging because CT and MRI scanners are limited by physics. CT and 

MRI scanners rely on sending a field into the human body and measuring changes in 

that field, making medical imaging limited by both the strength of the field produced and 

the sensitivity of the instruments used to measure the field. The distance between the 

slices is also shrinking with the newest scanners able to achieve 1mm distance between 

slices, allowing smaller anatomical items to be scanned with more precision. 

1.2 CT and MRI Technology 
Computer Tomography is a medical imaging technology that uses ionizing 

radiation from an x-ray tube to generate cross-sectional slices of the patient’s body [5]. 

An x-ray generating tube is placed to one side of the patient and x-rays are emitted in 

the direction of the patient with an x-ray sensor on the opposite side of the tube. This 

process generates a single planer image. The tube and sensor are then rotated slightly 
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around an axis relative to the patient and take another planer image. This process is 

continued until a complete scan of the patient is performed. Medical imaging is the most 

common application of CT scans, but there are other industrial applications such as 

nondestructive evaluation of mechanical structures. 

Magnetic Resonance Imaging (MRI) is a technology built upon the use of magnetic 

fields and radio frequency pulses. MRIs work by placing the scanned object, often a 

person, into a powerful unidirectional magnetic field. The purpose of the magnetic field is 

to align nuclei in the object, typically hydrogen. Nuclei with an odd number of protons or 

neutrons exhibit the quantum-mechanical phenomenon known as Nuclear Magnetic 

Resonance (NMR), or a spin causing a weak magnetic field. A specific radio frequency 

(RF), known as the Larmor frequency, is determined by the magnetic field strength and 

is able to resonate the atoms and knock them out of alignment [7]. When this RF signal 

is removed, the atoms oscillate back into alignment. The time taken for the atoms to 

oscillate back into alignment is measured to determine properties like tissue density. 

This process would provide one sample for the entire object. To obtain samples at 3D 

points in the space of the object, gradient magnetic fields are used to change the 

magnetic field strength along the object and thus change the Larmor frequency required 

to resonate the atoms along the object [6,7]. 

Felix Bloch and Edward Purcell first discovered MRI technology in 1946. It was not 

until the early 1970s that is was used for imaging purposes. Its use has since exploded 

with the highest number of users being in the medical industry [6]. 
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1.3 Volumetric Data 
While CT and MRI scanners can obtain slices from any angle or direction, they are 

typically obtained by scanning along the axis of the body, from head to feet or vice 

versa, as seen in Figure 1. “Scanning”, as discussed in the preceding paragraph, is the 

process of sending a field into the human body and measuring the changes to the field 

to determine physical characteristics within the body, generally tissue densities 

compared to air or water. For CT scanning, the field is an x-ray and for MRI the field is a 

magnetic field. These 2D slices can then be combined to create a single 3D block of 

data representing the entire scan of the patient, as shown in Figure 1, known as 

volumetric data. The data itself can be stored in various ways depending on the 

application itself. Medical data often stores volume data as a set of files, where each file 

contains a single 2D image slice as well as patient specific data (e.g., name, age, date of 

scan, etc.).  

 

Figure 1: CT scanner showing the scanned body path to a 3D volume. 

There are many different file types associated with volumetric data depending on 

the industry and their use, such as Digital Imaging and Communications in Medicine 

(DICOM), Neuroimaging Informatics Technology Initiative (NIfTI), Analyze/SPM, Medical 

Imaging NetCDF (MINC), and Analysis of Functional NeuroImages (AFNI). For example, 

DICOM is a very common file type used in the medical industry to store volumetric data 
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of body parts representing a single time step. However, when looking to store volumetric 

data associated with neuroimaging, the neuroimaging community created the NIfTI 

format to accommodate time-based scanning. NIfTI was designed to store both high 

resolution single time-step anatomical scans of the brain as well as lower resolution 

functional scans of brain activity over time. While the original purpose of the NIfTI 

standard was aimed at storing brain scans, the NIfTI format is generalizable to any fMRI 

data. This research will focus on using the NIfTI standard because of its widespread 

adoption in the fMRI area. 

Storing modeling and simulation data in volumetric form is critical in medical 

imaging but is also in other industries as well. The meteorological industry has used 

volumetric data to visualize cloud formation and rain patterns. There has also been 

research done on using volumetric data for complex modeling of trends and anomalies 

in different phenomena such as ocean turbulence, precipitation, hurricanes, and acid 

rain [8]. For example, a 3D visualization of hurricane wind speeds can be seen in Figure 

2. Geologists have been using CT scans to better visualize geological information like 

porosity, pressure, and temperature in three dimensions from core samples for more 

than a decade [9]. At a smaller scale, micro-biologists have been using volumetric data 

to visualize microscopic organisms in high-resolution without disturbing them [10]. 
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Figure 2: Hurricane wind speeds visualized in 3D [8]. 

1.4 Overview of Volume Rendering 
Volume rendering is the process of taking volumetric data and visualizing it. Unlike 

surface rendering that represents an object as a series of vertices making up an outer 

shell to show the object’s shape, volume rendering sees an object as a three-

dimensional lattice of vertices similar to a Rubik’s Cube. A volumetric dataset does not 

contain any defined surfaces or edges. Therefore, surface rendering techniques are 

inadequate to use for visualizing volumetric data. Surface rendering does not contain 

values inside the object shell, whereas volume rendering contains values at vertices 

throughout the mass of data being represented. 

New rendering techniques were required to take advantage of the full three-

dimensions of data provided in volumetric representations. The main classes of volume 

rendering techniques are Iso-surface Surface Rendering, Image Splatting, Shear Warp, 

Texture Slicing, and Raycasting.  

Figure 2: 2D visualization of the instantaneous velocity field just
above the ground level at time (t = 0) in the simulation. The white
curve in the image shows the path of the vortex center from (t = 0)
until the hurricane makes landfall (t = 44).
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Figure 3: This plot shows how our anisotropic diffusion solver scales
with the number of processors.

Figure 4: Visualization of the instantaneous velocity field at time
(t = 44) in the simulation. The color varies from blue to red with
increasing velocity magnitude.

2.3 The dataset

The dataset used in this poster is obtained from a weather simula-
tion produced by the US National Center for Atmospheric Research
(NCAR). It shows the Isabel hurricane, a large tropical depression
that made landfall on the East Coast of the US on September 18th
2003. Because of strong wind and heavy rainfall, it caused exten-
sive damage. The simulation covers a period of 48 hours, in which
the hurricane moved along the path indicated in figure 2. The entire
dataset covers 48 time steps. Each time step contains the instan-
taneous velocity field, in addition to several scalar fields including
cloud, precipitation, vector magnitude, temperature and pressure.
The grid resolution is 500x500x100, making the total size of the
simulation file around 30GB.

3 VISUALIZATION OF ISABEL

To make a 3D animation of the hurricane, we have injected a col-
lection of particles evenly distributed throughout the whole domain.
These particles are then tracked along the time-dependent velocity
field by calculating their path lines. In order to maintain a coher-
ent particle density and to avoid clustering as time increases, we
have developed a new particle advection strategy. This strategy is
inspired by an algorithm used to visualize evenly-spaced stream-
lines in 2D steady flows [4]. At each time step, these particles are
used as seed points to generate stream lines using anisotropic dif-
fusion. This way, the animation shows the advection of particles,
while each frame in the animation shows the instantaneous velocity
field.

The right image in figure 1 shows the cloud field together with the
instantaneous velocity field at time (t = 44) in the simulation. This
is achieved by employing a two field visualization technique, pro-
posed by Helgeland and Andreassen [3], that reveals the directional
information of a three-dimensional vector field inside volume data
features such as clouds. Figure 4 shows the instantaneous veloc-
ity field represented by cigar shaped stream lines. To reveal the
3D shape and depth relations among the field lines generated by
anisotropic diffusion we have used a shading technique called limb
darkening [3]. All 3D fields are rendered using the volume render-
ing tool VoluViz [2].
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1.4.1 Iso-surface Surface Rendering 
Iso-surface surface rendering was created to reduce the complexity of volume 

rendering by representing the volumetric data as a surface comprised of geometric 

primitives [11]. The Marching Cubes algorithm is the most popular rendering method for 

extracting a surface from the volumetric data [12]. The major advantage to iso-surface 

surface rendering is computational efficiency. However, there are several disadvantages 

including the accuracy of the representation. The geometric primitives can only 

approximate the surface of the volume, therefore small details can be lost when 

approximated. The other major drawback is the loss of internal data because the volume 

is represented as a surface. Figure 3 shows an iso-surface surface rendering of a 

human skull. 

 

Figure 3: Iso-surface rendering (http:// 
www.aravind.ca/images/ivis_gallery/isoColour.png) 

1.4.2 Image Splatting 
Image splatting is a technique using overlapping basis functions to represent the 

volume. The most commonly used basis functions are Gaussian kernels [13]. The basis 
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functions are projected to the screen as a superposition of pre-integrated 3D kernels, 

referred to as 2D footprints. One of the advantages of image splatting is that only the 

volume points are stored, ignoring the empty space around the volume. The 

disadvantage to image splatting are color bleeding, aliasing, and blurring due to blending 

the splats [14–16]. Figure 4 shows an example of a human head rendered using Image 

Splatting [17]. 

 

Figure 4: Image splatting [17] 

1.4.3 Shear Warp 
Shear warp volume rendering [18,19] determines the face of the volume that is 

most parallel to the viewing plane and then casts rays through the volume starting at the 

base plane. The resulting image is then projected onto the image plane through a 3D 

transformation and a 2D image resampling operation. The advantage of shear warp 

rendering is the computational efficiency achieved from only sampling each voxel once. 

The disadvantage is the image quality due to the sampling technique used. The image 

also becomes more distorted as the base plane goes from perfectly parallel to the image 
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plane to closer to perpendicular due to the 3D projection transform. Figure 5 shows an 

example of shear warp rendering when used on a chest scan of a human. 

 

Figure 5: Shear warp [16] 

1.4.4 Texture Slicing 
Texture slicing [20,21] is a technique that slices the volume into a series of planes 

parallel to the image plane. These parallel planes are then composited together using 

back-to-front compositing to achieve the final image. The advantages of texture slicing 

are a higher quality image than the previous techniques with good computational 

efficiency. One disadvantage is the requirement to recomputed the parallel planes every 

time the view matrix is updated. Figure 6 shows an example of texture slicing when used 

to visualize a human head scan. 

Shear-Image Ray Casting Volume Rendering: Wu, Bhatia, Lauer, Seiler 

 10 

     
Figure 1: Shear-Image Rendering Gallery: Various volumes with lighting effects or embedded geometry 

  
Figure 7: Comparison of shear-warp (left), and shear-image order (right) 

  
 Figure 8: Gradient magnitude modulation Figure 12: An image of a cerebral aneurysm 

         
Figure 13: Three zoomed views of the carotid arteries of the neck, showing the image quality of shear-image order 
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Figure 6: Texture slicing [17] 

1.4.5 Raycasting  
Raycasting [22,23] is a technique that involves casting rays from each pixel of the 

image plane in the view direction through the volume. The rays take multiple samples of 

the volume and composite them together to achieve a final pixel value. Raycasting is 

widely accepted as the best quality volume rendering technique of those discussed here. 

Figure 7 shows an example of raycasting using a human chest CT scan. Raycasting will 

be discussed in more detail in Chapter 2. 
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Figure 7: Raycasting 

1.4.6 Implementing Different Volume Rendering Techniques 
Each of the discussed volume rendering techniques allows for three-dimensional 

information to be rendered each frame to varying visual accuracy and computational 

cost. Iso-surface surface rendering and image splatting are the least computationally 

expensive, but the image quality is substantially below the other techniques. Texture 

slicing and raycasting are both computationally expensive but provide a higher quality 

image. 

All of these volume rendering techniques are more computationally expensive than 

surface rendering. However, there have been many advances in software optimization 

and hardware acceleration that has allowed volume rendering to achieve real-time 

speeds [11]. Many of these improvements are from advances in graphics hardware and 

a programmable graphics pipeline [24]. 

The medical industry has been the leader in volume rendering research due to 

widespread use of CT and MRI scans for diagnoses and treatment planning. However, 
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volume rendering can be used in many other industries. Childhood biology education is 

one example where volume rendering can be used to teach children about the internal 

anatomies of animals, as shown in Figure 8 [25]. Volume rendering allows the children to 

see inside the animals without requiring dissection. In addition, because the data is 

digital, they can learn about many more types of animals at the push of a button. It is 

possible in the same way to use volume rendering to see inside objects that are too 

valuable to be dissected. Archeologists can use volume rendering to nondestructively 

observe the inside of artifacts such as mummies, as seen in Figure 9 [26]. Another 

example of volume rendering in the medical field, but for a different application, is 

surgical training. It is now possible to take a scan of an actual patient and practice the 

surgery multiple times before ever stepping into the operating room [27]. 

 
 

Figure 8: Voumetric visualization 
of a biology frog 

(http://www.cs.utah.edu/~jmk/images/fr
og2.jpg) 

Figure 9: Iso-surface rendering 
of a mummy 

(http://www.cs.utah.edu/~pnathani/co
urses/cs5630/Project4/DirectVolumeR

endering1.png) 

1.5 Functional Medical Imaging 
Unlike traditional medical imaging, which focus on viewing inside the body to 

identify anatomical features statically, functional medical imaging looks at these features 

over time. For example, this results in a doctor viewing not just a heart, but how that 

heart beats. Functional imaging is becoming more prevalent for various diagnosis and 
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treatment planning. Currently, it is heavily used in identifying brain activity. This 

fundamental change to what is being viewed changes the technology requirements. 

Functional scanning technology must be able to look inside a patient, but it must be able 

to do so much quicker than standard methods. Functional imaging technology must be 

able to perform a complete scan, yet capture the necessary motions at the characteristic 

scales. If a heart pulses at 80 beats per minute, the scan must capture it accurately. CT, 

MRI, and ultrasound technologies are often used for functional imaging.  

Functional CT scanners are used to capture anatomical movements like a beating 

heart or the movement of an arm. They have a faster scan time relative to an MRI 

machine but CT scans do not provide sufficient contrast when looking at soft tissues like 

the brain. Imaging contrast is critical because it indicates how discernable different 

anatomical parts are from one another. The higher the contrast, the easier it is to discern 

differences and make necessary observations. For brain scans, MRI machines are used 

because they provide a higher contrast for soft tissue, but require a longer relative scan 

time. 

Data storage becomes a concern when moving from 3D to 4D medical imaging. 

The data storage requirement multiplies the original 3D size by the number of time steps 

scanned. For a simple example, suppose a 3D scan of the human heart may require 300 

MB of storage, but a 4D scan of that heart over a one-minute period with a scan every 

two seconds would result in 9 GB or 30 times the size. This dramatic increase in data 

creates problems with appropriate file format types, computer hard drive space, and 

transferring over networks. 
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1.6 Functional MRI 
MRI imaging technology has been around for the last 50 years but functional MRI 

(fMRI) technology has only been available for the last 20. Functional MRIs are often 

used synonymously with brain activity scans, even though that is not their only use [28]. 

The impact of fMRI on researchers has been dramatic. In 1992, there were zero 

publications with the word fMRI in the title, abstract, or a keyword. In 2005, there were 

close to 2500 research publications meeting those criteria, showing explosive growth in 

the fMRI research being performed [29]. The impact on the world has been just as 

significant, with impacts in the areas of science, clinical practice, cognitive neuroscience, 

mental illness, and society [30]. 

The reason for the large growth in functional imaging is a change in the scanning 

methodology. In static imaging, the time taken to scan an object is not really an issue as 

long as the person can be held relatively still. The goal with static imaging is to capture 

the highest resolution slice scans with the smallest slice spacing and longer scanning 

times accomplishes this high resolution scanning. This provides medical personnel the 

most coverage area and the ability to identify very small anatomical features or tumors.  

Functional imaging would ideally provide the same high resolution scans with 

small slice spacing multiple times a second. In practice, this is not always possible 

because of MRI technology is limited by how slowly it takes atoms to relax back into 

alignment after knocking them out of alignment. This alignment time can be shortened 

by using stronger magnets but it will never be able to be completely overcome. Medical 

imaging research has created a work around that combines one high resolution scan 

(slow) of the anatomy of the brain with a series of lower resolution scans (fast) to 

measure brain activity. The brain activity data can then be combined with the high 

resolution anatomical data to achieve a view of what parts of the brain are activated. 
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This difference between static and functional imaging created a need for new ways 

to store the data. The DICOM format was designed for storing static data like X-rays and 

CT scans, but it is not easily extended to 4D time-varying data. Instead, new data 

formats, such as NIfTI [31] and Analyze [32], were envisioned to work with the functional 

imaging requirement of a structural and a functional scan in the same data. The 

Neuroimaging Informatics Technology Initiative (NIfTI) data format is one of the most 

popular and will be the data format used in this research. 

1.7 Motivation 
The benefits of medical imaging technologies are extensive with the most 

prominent being the ability to diagnose patients without using invasive methods. Using 

functional imaging technologies, doctors and researchers are learning new things about 

how the body works. Surprisingly, this is just beginning to scratch the surface of what 

can be learned using these technologies. As scanning technologies improve, the amount 

that can be learned about the human body will only be limited by our ability to process 

and understand the data. 

Creating visualization tools for interpreting large amounts of medical data is a 

significant challenge. Many researchers have spent their careers building tools and 

methods for visualizing medical imaging data. The advancements have been significant, 

but have largely remained in the realm of research and have not expanded beyond. 

These advancements often are specific to one project or application and not general 

enough to be used for other purposes. The applications described earlier in this section 

are visualization tools, but they are limited to their specific use case, data format, and 

hardware platform. Software developers that are interested in creating commercial tools 

for medical professionals, must wade through the mass of literature on volume rendering 
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and determine if any specific implementation could be generalizable enough for their use 

on their hardware platform. Volume rendering techniques that may work on a desktop 

computer with an advanced graphics card for 3D data, probably won’t work on a virtual 

reality or mobile device with 4D data. 

Another issue is that the use of medical imaging technology has been reserved for 

high-end desktop computers and laptops. Mobile smartphone adoption has increased 

dramatically in the US and worldwide [33]. Virtual reality may be primed to make the 

same sort of meteoric rise in adoption with commercial companies jumping into the 

virtual reality market, such as Facebook buying Oculus Rift in 2014 for $2 billion [34]. 

This dramatic adoption of mobile computers, smartphones and tablets, and the new 

commercialization of virtual reality technologies has opened the door to more platforms 

than previously available. There is a need to drive medical imaging technology toward 

supporting these types of devices, because it is becoming more common for medical 

professionals to have access to mobile computing platforms, than traditional desktop 

computers. Training and simulation are also a significant focus for medical professionals 

and the use of virtual reality for training will only increase in the future. 

It is therefore necessary to determine whether it is feasible to build 4D volume 

raycasting tools across these different hardware and software platforms. It is especially 

important to determine whether real-time interaction can be achieved. This is critical in 

volume rendering where user interaction with the volume provides an additional sense of 

depth. This research will explore the feasibility of developing 4D volume raycasting 

capabilities on desktop, mobile, and immersive virtual reality platforms. 
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1.8 Dissertation Organization 
The remainder of this dissertation will cover the relevant background on 3D 

volume rendering in Chapter 2. Chapter 3 will present the current research contributing 

to 4D volume rendering and the research issues addressed by this work. Chapters 4 will 

discuss work on building a generic NIfTI data loader. Chapter 5 will describe 

implementing 4D volume raycasting on a mobile device. Chapter 6 will present the work 

done in determining the feasibility of developing a generic 4D volume raycasting 

functionality across dissimilar hardware and software platforms. Chapter 7 will 

summarize the findings of this research and discuss possible future directions. 
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CHAPTER 2: VOLUME RENDERING 
There has been a substantial amount of research done in the area of volume 

rendering. This chapter will cover the basics of graphics programming, volume 

rendering, and the specific research being done in 4D volume rendering. This section 

will evaluate the different methods based on computational efficiency and visual quality. 

2.1 Computer Graphics and OpenGL 
Volume rendering is a computationally expensive method for rendering data that 

relies heavily on the understanding of computer graphics and rendering pipelines. Many 

of the rendering pipelines available today are similar in theory, but different in 

implementation. This section will focus on describing the OpenGL rendering pipeline and 

how this pipeline takes a 3D scene and converts it into a 2D image to display on screen. 

Graphics scenes, like volumetric data, are comprised of multiple objects with their 

own characteristics such as geometry, transformations, textures, lighting, bump maps, 

and shading. These characteristics describe how the object should look on the screen. 

Developers define all of the objects and their characteristics to set up a scene before it is 

handed to a renderer to convert everything into a single graphics frame to display on the 

screen. In computer graphics applications, this rendering takes place continuously until 

the application is terminated, this is known as the rendering loop. A great analogy is film 

based movies, where each frame in the film is a single static image, but by showing 

those images very quickly to the audience, there is motion. In computer graphics, the 

graphics card is generating those static frames on the fly and showing them to the 

viewer fast enough to create motion. 

The OpenGL pipeline, shown in Figure 10, outlines the path that scene objects 

take to go from being a 3D scene to a 2D frame. In this flow chart of the rendering 
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pipeline, object data begins as a Display List. From there, data takes two different paths 

depending on whether it is vertex data (vertices, lines, polygons) or pixel data (pixels 

and images). 

The vertex data (vertices, lines, polygons) goes through the vertex path in the 

rendering pipeline where at the minimum, the vertex data is transformed from 3D scene 

space to 2D screen space. The vertex path is labeled the Geometry Path in Figure 10. 

Advanced operations, such as computing texture coordinates, lighting, and material 

properties, are also performed here. After the scene is converted into 2D screen space, 

clipping and culling are performed to generate the final primitives. 

 

Figure 10: OpenGL Rendering pipeline 
(http://www.songho.ca/opengl/gl_pipeline.html) 

The pixel data (pixels and textures) also starts as a Display List, but continues 

down a different path than the vertex data. The pixel path is labeled the Image Path in 

Figure 10. The pixel data is first unpacked from the current format into the proper 

number of components. The data is then scaled, biased, and processed by a pixel map. 

The pixel data is then stored in texture memory or sent to the rasterization step. 
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Originally, both the vertex and pixel pipelines were fixed functionality. There was 

no way to change how the GPU handled data. This has since changed from a fixed 

pipeline to a programmable pipeline, where developers can write their own ways to 

handle vertex and pixel data known as shaders. This change to a programmable pipeline 

has revolutionized the way computer graphics, specifically volume rendering, is done. 

Both the vertex and pixel data come together in the rasterization step. The 

rasterizer takes both the vertex and pixel data and converts them into fragments. The 

fragments represent individual pixels in the framebuffer and are assigned both a color 

and a depth. Before being assigned to the framebuffer, the fragments go through a 

series of fragment operations, which can contain any or all of the following, texturing, 

fog, scissor test, alpha test, stencil test, depth-buffer test, blending, and dithering. Only 

after going through these fragment operations, is the fragment stored in the framebuffer 

and finally displayed to the viewer in the final image.  

One example of the programmable graphics pipeline at work is bump mapping. 

Figure 11 shows how bump mapping works with a smooth sphere represented in the left 

and the bump map texture in the middle. The pixel pipeline can be programmed using a 

fragment shader to modify the sphere’s normal based on the bump map, so when Phong 

shading is used, there is the appearance of a bumpy texture. This technique is very 

effective because it reduces the number of polygons required for rendering while 

providing more realism. This is just one example of programming the rendering pipeline. 

More information on the OpenGL rendering pipeline can be found in the OpenGL 

Programming Guide [35]. 
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Figure 11: Bump mapping using a sphere and a texture to make an orange. 

 

2.2 Raycasting 
The various forms of volume rendering have been described in Chapter 1.4 with 

raycasting being one of the most popular. When compared to other volume rendering 

techniques, raycasting is considered by many to offer the highest visual quality. 

Raycasting is referred to as a direct volume rendering technique [36]. It involves casting 

rays from each pixel in the framebuffer through the volume in the view direction. All 

points along the rays’ path that intersect with the volume are sampled and composited to 

generate the final pixel color. This process will be outlined in the resampling and 

compositing sections of this paper. Advances in computational and graphics processing 

speeds, along with research to optimize raycasting including early ray termination and 

empty space skipping, allow for real-time use of it on many hardware platforms. 

When volume rendering on the central processing unit (CPU), it is common to 

divide the screen into sections to try and parallelize the process. Each section is given to 

one of the CPU cores to render. The sections rendered by each core are then combined 

together to get the final image to show [37–39]. This provides a faster render than a 

single threaded application, but with most commodity computers topping out at eight 

cores, the maximum speed up is eight times. 
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Raycasting is a parallel method by nature with all rays executing independently of 

each other. This makes raycasting an ideal method for use on massive parallel 

architectures like graphics processing units (GPUs). There has been a significant 

movement in parallel computing to use commodity GPUs containing upwards of 3,000 

computational cores [40]. Using a GPU as a parallel computation device was made 

possible by making the vertex and fragment shaders programmable. Research has 

shown significant improvements in computational capability over modern CPUs [41,42]. 

To take advantage of this, multiple software packages and languages have been created 

for programming the GPU [43–45]. This research will utilize GLSL for GPU programming 

[45]. 

The main drawback to using a GPU for volume raycasting is the amount of texture 

memory on the graphics card. It can be a challenge to fit all the 3D voxel data as well as 

gradients and transfer functions into a GPU’s memory. This limitation is slowly being 

overcome with some of the newest high-end GPUs containing as much as 12 gigabytes 

of texture memory, such as the NVIDIA Quadro K6000. While the K6000 is a commodity 

card, it will take a few years before the typical workstation has this type of power. This 

mentions nothing of the challenge of mobile devices where the texture memory limitation 

is significantly less than 12 gigabytes.  

Raycasting was selected as the volume rendering method for this research. 

Therefore, the remainder of this paper will presume the use raycasting when discussing 

volume rendering methods. 

2.3 Volume Pipeline 
Volume rendering begins with acquiring a volumetric dataset. As described in the 

introduction, there are many ways to acquire volume data as well as many formats. 
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However, volumetric data is all comprised of a set of samples, known as voxels, in the 

three dimensions (i.e. x, y, and z). Each point contains a measured value, v. The 

measured value of the voxel can vary widely depending on the application. For example, 

the measured value could be a property of the data, such as density, pressure, or 

temperature.  

In medical imaging, the voxel values typically represent tissue densities and are a 

one-dimensional value. In fMRI brain scans, the voxel value is a one-dimensional value 

representing the blood oxygenation level-dependent (BOLD) signal change [28]. This is 

used because neural activity has been linked with local changes in brain oxygen content 

[46]. The change of oxygen levels over time also requires the addition of a time 

component, t, to the volume data sample, resulting in a (x,y,z,t,v) for each sample. 

Volumetric data samples are not required to be in any specific order or orientation 

but it typically follows an evenly spaced rectilinear grid. Medical imaging follows this 

ordered approach to volumetric data. Voxel data is typically obtained by scanning along 

the axis of the body, from head to feet or vice versa, and perpendicular to this axis as 

seen in Figure 1. These 2D slices can then be combined to create a single 3D block of 

data representing the entire scan of the patient, as was previously shown in Figure 1. 

The volumetric data is then run through the volume-rendering pipeline. The actual 

pipeline itself might differ depending on the application or the type of data being used, 

but the basic pipeline is the same for all volume renderers. Figure 12 shows the basic 

volume-rendering pipeline. Not all steps of this pipeline are used in all cases, nor are 

they always performed in this specific order. 
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Figure 12: Generic volume-rendering pipeline 

2.3.1 Segmentation 
Segmentation is an optional step in the volume-rendering pipeline that partitions a 

single volume into multiple sub-volumes. The segmentation step is almost always 

performed just once before rendering. This is used extensively in the medical field when 

attempting to identify tumors or other masses within a patient. Education also uses this 

technique extensively when teaching anatomy, where it is necessary to show a single 

organ instead of the entire body. Visualizing segmented data is typically done in one of 

three ways, visualizing the segmented data separate from the original volume, render 

the segmented volume as a surface within the original volume, or tag and store each 

voxel contained within the original volume. These three methods can then be used in the 

rendering process to change how the segmented volume is visualized to give it greater 

contrast to the rest of the volume. This is typically done by rendering the segmented 

volume in a different color or as a higher opacity than the rest of the volume. More 

details on segmentation can be found in these references [41,47,48]. Figure 13 shows 
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an example of tumor segmentation using fuzzy logic to classify tumor versus healthy 

tissue [49]. 

 
Figure 13: Tumor segmentation using fuzzy logic. Original data on the left with the 

segmentation shown on the right with blue indicating tumor. [49] 

 

2.3.2 Gradient Computation 
Gradient computation is another optional step that is typically only calculated once 

before rendering the volume. Gradients improve visual quality of the render by finding all 

the edges or boundaries between different materials in the volume. This produces a 

higher quality render and improved depth perception through the use of more complex 

shading techniques. The gradient is computed as the amount of variation between the 

voxel and its neighboring voxels and is represented as a three-dimensional vector. 

Gradients can be computed using many different methods with the tradeoff being, the 

more complex and accurate the gradient method, the more computation required. This is 

typically not a problem as the gradient is only calculated once and stored for use later in 

rendering. 

Three of the more commonly used gradient methods are the Central Different 

Gradient Estimator, the Intermediate Different Operator, and the Sobel Operator 

[16,50,51]. The main difference between these different gradient methods are the 

Results and Discussion: Probabilistic Segmentation of Tumors 
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Figure 44: Segmentation results for Test Case #1. 

 

A three-dimensional volume representation of the segmented tumor as well as the 

manually segmented tumor is presented in Figure 45 for comparison. Segmentation of 

tissues with similar density as the tumor is circled in the figure. Despite this interference 

in the segmentation process, the overall shape of the segmented tumor using the 

probabilistic segmentation method is very much in agreement with the shape obtained 

from manual segmentation.  
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number of neighboring voxels they sample. The Central and Intermediate methods both 

use six neighboring voxels to compute the gradient, making these methods 

computationally fast and relatively easy to implement. Figure 14 shows the central 

difference gradient estimator for the green voxel in the middle. The surrounding six blue 

voxels are used to calculate the gradient vector. Calculating the resulting vector is done 

using the equations in (1) where the intensity value of each neighboring voxel along 

each plane is averaged. This results in a single three-dimensional vector that can be 

used for shading. 

𝐺" =
𝑆 𝑖 + 1, 𝑗, 𝑘 − 𝑆 𝑖 − 1, 𝑗, 𝑘

∆𝑥
  

𝐺. =
𝑆 𝑖, 𝑗 + 1, 𝑘 − 𝑆 𝑖, 𝑗 − 1, 𝑘

∆𝑦
 (1) 

𝐺0 =
𝑆 𝑖, 𝑗, 𝑘 + 1 − 𝑆 𝑖, 𝑗, 𝑘 − 1

∆𝑧
  

 

 
Figure 14: Central difference gradient calculation for the green central voxel. Blue voxels 

represent the sampled voxels. 
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The computational efficiency of these methods, make them ideal for use in 

implementations requiring the gradient to be recomputed each frame instead of once at 

the beginning. The Sobel method is a more accurate gradient calculation than the other 

two methods because it analyzes 26 neighboring voxels. This method is best applied to 

implementations where the gradient is only calculated once before rendering because of 

the relatively large computational expense. 

2.3.3 Resampling 
Resampling is typically the first step in a continuous render loop. The goal of 

resampling is to be able to sample the volume data at different positions in three-

dimensional space to be used later in the render. The sampling techniques used are one 

of the primary differences between volume rendering techniques. Texture slicing 

samples the 3D space along planes that slice through the volume. Raycasting, on the 

other hand, samples at evenly space intervals along a ray. Figure 15 shows a 2D 

raycasting example of resampling where the person’s eye is on the left looking at the 

computer screen represented by the black line, as rays are cast into the gray volume. 

The bounds of the volume data must first be determined by sending imaginary rays, ri, 

from each pixel of the framebuffer through the scene, in the viewing direction. Each ray 

is looking for the front of the volume, the blue boundary, represented by the first 

intersection with the volume, fi, and looking for the back of the volume, the green 

boundary, Ii. 
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Figure 15: Diagram of raycasting in 2D. 

The rays that enter the volume take samples at specified intervals, shown by the 

dashed lines in Figure 15, along the ray until it exits the volume. The sampling interval 

can be changed to accommodate different implementation goals. The tradeoff is smaller 

sampling intervals are more computationally expensive but produce higher quality 

images. In general, the sampling frequency should be at minimum, half the size of the 

shortest distance between voxels to meet the Nyquist rate for sampling. The Nyquist rate 

is the lower bound for alias-free signal sampling and achieved by sampling the signal at 

twice the rate of the signal [52] and provides the optimal level of sampling.  Rays that do 

not intersect with the volume will render the background image color. 

A voxel is commonly represented as a cube in medical imaging where each vertex 

represents a value.  During the step of casting rays and taking samples at specific 

intervals, it is rare that a ray can sample a vertex directly. More commonly, the sampling 

interval will require sampling a point within the voxel. Therefore, interpolation methods 

are needed to accurately determine an approximate value for the sample lying within a 

voxel. There is a tradeoff between quality and computational efficiency when selecting 

an interpolation method. The interpolation methods capable of generating the highest 
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quality renders are not real-time because of the significant computational time required 

to perform the calculations. Nearest Neighbor and Trilinear Interpolation are two of the 

least computationally expensive methods that are most commonly used with real-time 

rendering applications. Tricubic and B-spline interpolation are slower but higher quality 

interpolation methods, most commonly used when accuracy is critical [27,53]. 

Most real-time implementations of volume rendering use Trilinear Interpolation due 

to its reasonable visual quality and minimal computational requirements. Commercial 

graphics processing units all provide hardware-accelerated Trilinear Interpolation, 

making them very fast. The key to Trilinear Interpolation is the assumption that there is a 

linear relationship between neighboring voxels. Figure 16 demonstrates the process of 

linear interpolation for sample point C within a voxel. First, values along the fours axes 

(i.e. C011 to C111, C001 to C101, C000 to C100, and C010 to C110) parallel to the x-axis are used 

to interpolate values for C00, C01, C10, and C11. Next, those values are interpolated along 

the z-axis, resulting in C0 and C1. Finally, C0 and C1 are interpolated along the y-axis to 

produce the final value of sample C. 

 

Figure 16: Trilinear Interpolation (http://en.wikipedia.org/wiki/Trilinear_interpolation). 
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2.3.4 Classification 
Classification is the process of determining the subset of interpolated points to 

make up the final image. This is one of the most powerful tools in volume rendering from 

a visualization standpoint as it determines what parts of the volume are shown. This is 

done by mapping the voxel intensity values to opacity values between zero and one. 

Setting a voxel’s opacity to zero prevents it from being viewed in the final image, as it is 

translucent. Conversely, setting the voxel’s opacity to one ensures all of the voxel’s data 

will be shown. A range between zero and one indicates how much of that voxel’s data 

should be included in the final image. By including a percentage of the voxel’s opacity in 

the final image is how volume rendering achieves transparency to see the interior of a 

volume dataset. 

The mapping between voxel intensity and opacity is known as an opacity transfer 

function [50,54]. Creating an opacity transfer function can be very complex depending on 

the type of data being viewed. Generating a histogram of the voxel data to visualize the 

high frequency intensities is typically the first data analysis used to create an opacity 

transfer function. Opacity transfer functions can be designed to allow specific features of 

a volume dataset to be easily examined. 

2.3.5 Coloring 
Coloring is another step in the rendering process that provides immense power in 

understanding data. The purpose of coloring is not always to provide photo realism, but 

to provide sufficient contrast to identify desired features. Figure 17 shows two different 

coloring schemes for the same data with the Muscle and Bone coloring scheme on the 

left and the NIH scheme on the right. The challenge with coloring is typical volume data 

assigns a single value (intensity in medical imaging) to each voxel and not a three-
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dimensional color. Therefore, coloring methods must intelligently convert a single value 

into three different values in a way that makes the desired structures more visible. 

Typically, to accomplish this, a different color transfer functions is used for each color 

channel. So, for a red-green-blue (RGB) color scheme, then three transfer functions 

would be used one each for red, green, and blue. These three colors are then combined 

to obtain the final color value for each individual voxel. 

  
Figure 17: Two different coloring schemes of the same data. 

 

The color transfer functions can be created manually or automatically. Creating 

color transfer functions manually allows for precise control and the possibility of a better 

result but can require significant time. Automatically generating transfer functions is less 

time consuming but all generators are not equally good across different volume 

rendering uses and data histograms. It is also possible to use a hybrid approach to 

select transfer functions, where the search for a transfer function is treated as an 

optimization problem and addressed with stochastic search techniques. The user is kept 

in the loop by selecting a set of images closest to their desired outcome during each 

step of the search. Allowing the algorithm to progress toward an optimal set of color 

transfer functions for the user’s application [55]. 
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2.3.6 Shading 
Shading is the simulation of reflections of light and shadows on a surface. The 

importance of shading cannot be understated as it provides a better understanding of 

surface contours and depth in a computer graphics scene. In volume rendering, the 

shading model is applied per voxel after coloring. Figure 18 shows the importance of 

shading on a CT of a human skull. The left image shows the skull with standard lighting 

and no shading algorithm. The right image shows the same skull using a multidirectional 

occlusion shading model designed for more realistic renders [56]. The addition of 

shading provides added realism and a sense of depth to the skull that allows better 

understanding of the structure. 

 

The first step in shading is the calculation of the gradient of the sampled voxel. 

Different interpolation methods can be used to calculate the gradient with the most 

common method being Trilinear Interpolation. The gradient is then combined with the 

light vector, view direction, and voxel color to compute the final color. 

The most popular shading algorithms in volume rendering are the Phong 

Reflection model [57] and Gouraud Shading model [58] for their computational 

efficiency. Both methods use ambient light, diffuse reflection, and specular reflection with 

the light vector, gradient vector, and viewing direction. 

 
Figure 18: Shading on a human skull CT scan. Left shows no shading. Right image shows 

the same skull with shading [56]. 
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2.3.7 Compositing 
The last stage of the volume-rendering pipeline is to take all the voxel data 

sampled by an individual ray and composite the information into a single color for that 

pixel. This compositing process is typically done either in a back-to-front or a front-to-

back order for each ray. Front-to-back compositing is more commonly used because of 

the performance benefits and is the method used in this research.  

The front-to-back compositing method in Equation 2 shows the calculation for the 

final intensity value, I(x,y), for each ray. The final intensity value is a sum of the sample 

point intensities, Ii, multiplied by all the transparencies (1-αj) encountered previously 

along the ray. Put another way, each voxel sample can be thought of as a pane of 

colored glass that has some opacity, α. If the first pane of glass is completely opaque, 

the following panes of glass cannot be seen. If the first pane of glass is 75% opaque, the 

second pane of glass can be seen but its color will only be 25% visible at best. 

Compositing works the same way, the higher the opacity of a sample, the less the 

following sample’s intensity can contribute to the final intensity value. 

𝐼 𝑥, 𝑦 = 𝐼3

4

356

1 − 𝛼8

39:

856

 (2) 

Each voxel sample’s intensity value is a combination of the color, Ci, from the 

color transfer functions and the opacity, αi, from the opacity transfer function. Equation 3 

shows how these two values are multiplied together to computer the voxel sample’s 

color. The higher the opacity the more intense the resulting color contribution is.   

𝐼3 = 𝐶3×𝛼3 (3) 

 Front-to-back compositing is continuously evaluating the current voxel sample’s 

intensity and blending it with previous samples. This constant evaluation is what allows 
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front-to-back compositing to achieve the performance benefits mentioned earlier. When 

the cumulative opacity reaches 1.0, there is no need to continue compositing along the 

ray because the contributions of all subsequent samples would be zero according to 

Equation 2. This allows the front-to-back compositing algorithm to perform early ray 

termination and speed up the render. This is one performance optimization that can be 

easily implemented and can have significant impact on rendering speeds. More 

information on volume rendering compositing can be found in [59–62]. 

2.4 Advanced Raycasting Techniques 
Many advances have been made in volume rendering beyond the basic rendering 

techniques mentioned above. Some involve improving visuals and some involve speed 

optimizations. The speed optimizations will be discussed in Chapter 3 because they are 

very important to visualizing the large amounts of data involved in functional imaging. 

This section will focus on the advanced volume rendering techniques of lighting and 

clipping. 

2.4.1 Lighting and Shadows 
One of the most important visual strategies in any rendering type is the use of 

lighting and shadows due to its contribution in spatial comprehension through monocular 

depth cues [63,64]. With the goal of volume rendering being to interpret volumetric data, 

realistic lighting and shadows are crucial for viewers to understand special relationships. 

A simplified direction illumination model is often used in volume rendering instead 

of a global illumination model because of the computational complexity inherent in global 

illumination models. Phong Illumination [57] is a simplified illumination model and is the 

most widely used due to its computationally efficiency, as stated previously in the 

Shading section. This simplified illumination model does not consider the impacts of 
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other objects in the scene on lighting, but instead the light coming directly from its 

source. Phong illumination requires inputs of voxel position, voxel gradient, voxel color, 

and the light source’s position. Diffuse, specular, and ambient lighting are then applied to 

the voxel to obtain the final pixel color [65]. 

Illumination helps improve the visual quality and give some understanding of depth 

but it is shadows that really provide improve depth understanding. In computer graphics, 

shadows have been extensively studied in raytracing algorithms for improved visual 

realism [66–68]. However, not a lot of research has been done on shadows in volume 

raycasting implementations [65]. Raytracing is capable of accounting for light 

interactions from many objects within the scene, often requiring significantly more 

computational overhead. This allows raytracing to simulate a wide variety of visual 

effects, such as refraction of light through glass and reflections off surfaces. The 

additional computational overhead required achieving these high-fidelity effects make 

raytracing shadow models unattractive for interactive volume rendering applications. 

The computational overhead associated with raytracing methods for shadowing 

required a new set of methods specifically designed for raycasting. The first volume 

raycasting specific method for shadow mapping was in 1978 [69]. Shadow mapping 

adds an additional render pass, which determines which voxels are closest to the light 

source. Then in the main rendering pass, each voxel is tested to determine whether a 

shadow should be applied to it. Shadow mapping efficiently calculates shadows on a 

per-fragment basis, but is not capable of semi-transparent shadows. It can also provide 

soft shadows by using percentage closer filtering [70]. 

Opacity shadow maps [71] and deep shadow maps [72,73] are two techniques that 

built upon shadow mapping to achieve semi-transparent shadows. Of these methods, 

deep shadow maps are more often used for high quality rendering but at higher 
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computational cost. This technique uses a stack of textures to store both the depth and 

opacity information for various layers of the shadow map. This process can generate 

visual artifacts around very thin or complex areas, which can only be eliminated through 

the generation of additional shadow layers at additional computational cost. 

Ambient Occlusion is a different illumination technique that calculates the visibility 

of a light from a voxel. For computational efficiency, Vicinity Shading [74] pre-computes 

the occlusion for each voxel in the scene and stores them in a 3D texture for reference 

during the rendering loop. The computational efficiency of Vicinity Shading can be 

further improved by combining ambient occlusion volumes into a composite occlusion 

volume [75].  

Local Ambient Occlusion is slightly different from traditional Ambient Occlusion as 

it is based on casting rays in multiple directions from each voxel for a specified radius. 

The level of occlusion is based on how many non-transparent voxels each ray intersects 

[66,76]. Figure 19 shows the difference between traditional ambient occlusion and local 

ambient occlusion [77]. 

 

Figure 19: Diffuse illumination (left) versus local ambient occlusion (right) [77]. 
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2.4.2 Clipping 
Unlike surface models in traditional computer graphics, volumetric data contains 

internal structures and data. Clipping is a visualization method that allows the 

exploration of this internal data. It is important enough that almost all volume renderers 

implement some form of clipping. Clipping planes are by far the most basic and easiest 

to implement [78,79]. A clipping plane is a geometric plane that acts as a threshold for 

the volumetric data. All of the voxels on one side of the plane will be transparent and the 

other side will be visible. This allows parts of the volume to be clipped away to show the 

internals.  

More advanced clipping techniques have been created to allow more complex 

clipping shapes and provide better understanding of the data. Hinged clipping planes 

were created to provide better understanding of spatial relationships in the data [80]. 

Volume sculpting was proposed as a way to generate complex clipping geometry for 

exploring a volume [81]. Depth-based clipping allows complex geometric shapes to clip 

the volume [82]. The clipping plane itself can be deformable, allowing for complex 

clipped shapes [83]. Binary-clip volumes can also be used with depth-based clipping 

methods for more control over the clipping geometry [34, 80, 82, 83]. 

A different paradigm for clipping is to use exploded views to see the internals 

instead of removing external geometry. By moving the external data away from the rest 

of the data, the internals can be seen in relation to the entire volume. Figure 20 shows 

an example of a human head being examined by exploded view, where each view going 

from left-to-right increases the amount the external structure is moved to reveal the 

internals. 

The first uses of exploded views in medical imaging progressively built upon each 

other from simple spatial transforms of the volume [86] to slicing the volume up into 
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many different parts [87] and then using complex transformations to spread apart and 

peel away sections of the data [88]. The next big goal with exploded views was to 

automatically generate these views so the point of interest was not occluded as the 

volume was interacted with. This was done through modified compositing strategy [89] 

and intelligent spatial transformations [90]. 

 
Figure 20: Exploded view of a human head. [90] 

 

 



www.manaraa.com

39  

CHAPTER 3: 4D VOLUME RENDERING 
Rendering medical data in 4D presents its own sets of problems and limitations. All 

of the issues relevant to 3D volume rendering are present in 4D rendering, with added 

challenges of much more data and rendering multiple volumes simultaneously. There 

are also new visualization strategies that must be created to reveal important information 

in the data. 

In 3D volume rendering, there is one set of volumetric data for the entire scene. In 

4D rendering, there is one set of volumetric data for each sample time causing the 

amount of data to increase linearly with the number of samples taken. Thus, methods 

are required to handle the increase in data and allow rendering at interactive speeds. 

3.1 Rendering Speed Optimizations 
In 3D volume rendering, there is one set of volumetric data for the entire scene. In 

4D rendering, there is one set of volumetric data for each sample time causing the 

amount of data to increase linearly with the number of samples taken. Thus, methods 

are required to handle the increase in data and allow rendering at interactive speeds. 

Two of the most common methods for improving rendering speed with raycasting 

are early ray termination (also known as adaptive termination) and empty space skipping 

[91]. The goal of both is to reduce the number of resampling and compositing operations 

for a ray as it traverses the scene. 

Early ray termination was originally proposed by Whitted [92] as an adaptively 

terminating raytracing algorithm. Levoy [93] took this idea and developed two front-to-

back volume raycasting algorithms. The first was a case where the ray traversal should 

be terminated when an opaque voxel is reached. The second case terminates the ray 

traversal when the accumulated opacity reaches a user-specified level where additional 



www.manaraa.com

40  

samples will not dramatically change the final pixel color. In practice, this user-defined 

value is generally between 0.1 and 0.01. 

Empty space skipping is well researched in raycasting. The main idea behind 

empty space skipping is that most volumetric datasets contain large contiguous regions 

of voxels with no value, often represented as zero opacity. These large contiguous 

empty areas are very common in medical imaging where half of the volume space may 

be representing air. To prevent computational cycles from being spent compositing 

samples with zero opacity together, the voxel data can be stored in an organized data 

structure to quickly search for areas with relevant voxel data and to skip the empty 

areas. 

3.1.1 Octrees 
Octrees are one of the most common data structures used for empty space 

skipping. An octree is a tree data structure that recursively subdivides a 3D space into 

eight parts, which can be evenly spaced or not. An example of octrees and their 

subdivision strategy can be seen in Figure 21. Each node in the octree contains a value 

or range of values representing the accumulation of all the nodes’ values below it in the 

tree. This allows fast traversal of the data by starting at the top-level node and traversing 

downward in the tree structure until the desired value is found, stopping the traversal. 

In terms of volumetric data, the lowest level of the tree, the leaf nodes, are the 

individual voxels of the dataset. All the voxels are grouped with their eight neighbors to 

form the node one level above them, as shown in Figure 21. This continues until the top-

level node, the root node is reached resulting in a single node. The value stored at each 

node is a binary value representing whether the region contains all empty voxels. Storing 
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the data this way allows the octree to be traversed from top until the first node is reached 

indicating all subsequent nodes are empty and stopping the traversal. 

 

Figure 21: Octree data structure example 
 

The first octree used in volume rendering was created by Meagher to create a 

condensed representation of the volume, which was traversed in a depth-first manner 

[94]. Levoy built upon this work by representing the entire volume as a complete octree 

and rendering in image order by tracing the rays from the observer’s position through the 

octree [93]. This is the method many current techniques are built upon in volume 

rendering. While the use of octrees for empty space skipping is very common, there are 

other data structure implementations that have been proposed [91,95–101]. 

The texture memory on modern GPUs is still a bottleneck for large volumetric 

datasets, therefore, compression techniques have been investigated to reduce the 

amount of text data required to describe a volume. Branch-on-need Octrees (BONO) 

built upon the work done with the original octree to provide a more space efficient 

structure for octrees that are not power of two. Subdividing the volume data looks to 

create power of two subdivisions in the first level below the root node. This technique 

reduces the number of nodes in the tree resulting in a faster traversal and a smaller data 
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structure [102]. BONOs were then extended to hold 4D data by storing each time step in 

a separate tree, resulting in a Temporal Branch-on-need octree (T-BON) [103]. The T-

BON structure can be compressed even further by looking for data that does not change 

from one time step to the next. When this occurs, a pointer can be used in the node to 

point back to the previous time step’s node instead of maintaining an exact copy. This 

simple trick reduces the size of the T-BON by the duplicate node data as well as all the 

children nodes [104]. 

To speed up rendering, octrees can be used for more than early ray termination. 

Additional research used octrees to improve rendering speeds by storing aggregate 

values at each node to represent the values of the child nodes. In this way, a suitable 

“error” could be set to allow the octree traversal to stop before reaching the leaf nodes if 

the aggregate value of the node was less than the “error.” This method is similar to 

empty space skipping in that large homogeneous areas of the volume could be assumed 

to be of similar value and eliminated all at once. Boada looked at using the variance in 

the data at each node to define a “cut” line across the octree that stopped the tree 

traversal [105]. Plate instead determined when to stop the tree traversal based on the 

GPU texture size available and the desired level of detail [106]. Similarly, the octree can 

improve rendering speeds through the use of different levels of detail, where lower 

nodes in the tree represent higher levels of detail [107].  

3.1.2 KD-Trees 
KD-Trees are a multidimensional binary search tree conceived in 1975 by Bentley 

[108]. This tree data structure works very similar to octrees, except that the 

multidimensional volume is divided into two sections at each node and not eight as in 

octrees. Empty space skipping is the primary use of kd-trees in volume rendering, similar 
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to octrees. While the traversal of kd-trees is very fast, they are time consuming to create 

and are thus typically used for static scenes. There has been some work to overcome 

this limitation by creating an iterative approach to generating the tree, versus a recursive 

build [109]. Still, kd-trees are not heavily used in medical volume rendering at this time. 

3.1.3 Time Space Partitioning Trees (TSP) 
Time Space Partitioning (TSP) trees are an extension of octrees to handle 4D 

volumetric data conceived by Shen in 1999 [110]. The base of this structure is a BONO, 

but it then integrates the fourth dimension by adding a binary search tree at each node 

to represent the different time steps. This means that when searching for voxel data, the 

search must first traverse an octree to find the desired node and then traverse the binary 

tree to find the step in time. Each node also stores the error tolerance to allow early 

traversal termination once the data variance error is below the user specified threshold. 

The error tolerance value is traditionally calculated using the intensity value from 

the volume data. Ellsworth proposed evaluating this error tolerance using the RGB value 

obtained through the color transfer function [111]. This change was shown to improve 

rendering speeds by eliminating unnecessary tree traversals. 

3.2 Data Compression Techniques 
Texture memory on a GPU is one of the largest bottlenecks in volume rendering. If 

all of the volumetric data cannot be stored in the GPU’s texture memory, that data must 

be transferred back and forth between the hard drive and the GPU. This transfer process 

is often the reason large volumes cannot be rendered interactively. One way to 

overcome this limitation is to compress the data in an attempt to store more data in a 

smaller amount of texture memory. 
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3.2.1 Run Length Encoding (RLE) 
Run Length Encoding (RLE) is possibly the simplest compression methods to 

implement in computing. The method looks for repeating numbers in a sequence, such 

as empty space in a volume, and stores two numbers, the value itself and the number of 

times it is repeated in a row. This allows large homogeneous sections of data to be 

stored as two values. RLE does not support the highest compression ratios, so it is not 

often used alone. However, multiple compression implementations will use RLE along 

with another compression method. Neophytou is one of the few methods proposed that 

used RLE as the primary compression method [112]. 

3.2.2 Discrete Cosine Transform (DCT) 
Discrete Cosine Transform compression is a method of storing a finite set of data 

points as a sum of different frequency cosine functions. This method of compression 

was popularly used for compressing image files as the JPEG standard [113,114]. 

Medical imaging data is a stack of images and thus this technique would appear to be a 

perfect match. Lum changed the DCT compression from compressing slices to 

compressing voxels across time [115]. This change produced dramatic compression 

rates in datasets with high temporal coherence. 

3.2.3 Wavelets 
Wavelet compression techniques have taken over for DCT in recent years with 

newer image compression standards like JPEG 2000 using wavelets. There are dozens 

of different wavelets that can be used in signal processing. Volume rendering 

compression algorithms typically use the discrete wavelet methods such as Daubechies 

[116] or Cohen, Daubechies, Feauveau (CDF) [117]. Guthe used wavelets and run 

length encoding of empty space values to compress 4D volumetric data and decode it 
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on the fly [118]. To alleviate the problem of decompressing each time step, they stored 

the wavelet coefficients in a hierarchical tree structure, allowing the decompression of 

only the necessary coefficients at a specific point in time [119]. Other research has 

achieved similar compression results using different wavelets [120,121]. 

3.2.4 Index and Data Maps 
Another popular compression method with volumetric data is to use two maps to 

represent the total volume. The first map is an index that samples the volumetric data at 

regular intervals. The index map points to a position in the data map that holds the 

actual data. The data map grows as needed to represent all the different types of data. 

For homogeneous data sets, the sampling window in the index map can be very large, 

meaning a single index value can represent many voxels. The data map can also be 

very small because a few chunks can represent all of the different types of data.  

Kraus was one of the first to utilize this method in 2002 [122]. They used a 

fragment shader to decompress the data in real time and were able to achieve large 

compression ratios for large sampling windows. Binotto used the same compression 

technique and fragment shader decompression technique a year later with a different 

implementation [123]. Schneider used vector quantization to compress each slice of data 

and then used an index and a code book to further compress the textures. Their method 

used this index and data mapping to attempt to compress the data across the time 

domain after the vector quantization was used for compression within the time domain 

[124]. 

3.3 Multi-Volume Rendering 
Four-dimensional volumetric datasets significantly increase the amount of voxel 

data to be rendered. One strategy for optimizing rendering speeds is to decompose the 
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original data into two individual datasets. The first is a high-resolution scan holding all 

the structural data that does not change over time. For example, in an fMRI of the brain, 

this would equate to the structure of the brain itself. The second scan is a lower 

resolution time-varying scan. In the previous example, this would be the brain activity. 

This reduces the amount of volumetric data that changes from one frame to the next, 

allowing for faster rendering because large amounts of voxel data is not being 

transferred continually. 

However, this introduces the challenge of rendering multiple volumes at the 

same time. The two main challenges are mixing voxel data from multiple volumes into a 

single render and depth sorting the multiple volumes. Both of these challenges impact 

the final image representation and thus the interpretation of the data. Adding to this 

challenge is the fact that sometimes non-volumetric data must be rendered in the scene, 

such as a trocar for planning a minimally invasive surgery. 

Mixing data from multiple volumes into a single coherent image is a complicated 

problem that has been fairly well defined over the last 20 years. Multiple volume 

rendering uses the same basic volume-rendering pipeline described in Section 2.2, 

where volumes are repeatedly sampled, colored, and composited together over multiple 

points to achieve a single pixel value. The difference in multiple volume rendering is that 

there is one sample for each volume at each point in space. There are two different 

methods of combining those samples together. The first is One Property per Point 

(OPP), where a single volume’s sample is selected to be the final value at that point. The 

second option is Multiple Properties per Point (MPP), where all samples are combined 

together to achieve a single value for that point [125,126]. 

There are multiple ways to combine the sample values together in MPP. The 

most common method is to use a weighted function describing how much each volume 
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contributes to the final value. The biggest difference is typically where in the volume 

rendering pipeline this occurs. Data mixing can occur in the sampling, coloring, or image 

stages. When data mixing is performed at the sampling stage, all volumes are sampled 

at the same point for an intensity value. These intensity values are then combined to 

obtain a single intensity value for all volumes. The resulting intensity value can then be 

passed into the color and opacity functions to obtain a final color. When data mixing is 

performed at the coloring stage, each volume is sampled for an intensity value. The 

intensity values are then passed to the color transfer function to obtain a color for each 

volume sample. The colors themselves are then combined to obtain a final color for that 

sample. When data mixing is performed at the image stage, each volume is rendered 

separately before combining the individual frame buffers for a final image. Many 

multivolume renderers use different combinations of these mixing methods to achieve 

the highest quality visual for their specific application. 

Depth sorting of volumes is the other challenge of multiple volume rendering. 

Without properly sorting depth, the resulting images would not provide an accurate 

representation of the data. This could potentially be a serious problem if the volume 

renderer was, for example, being used for surgical planning and the trocar was 

visualized in front of the heart when it was actually being placed behind. Each rendering 

method has unique ways of handling depth sorting that will be described in the following 

subsections.  

3.3.1 Multi-volume Texture Slicing 
Texture Slicing is one of the easier rendering methods to perform accurate depth 

sorting because the technique inherently creates slices of data moving away from the 

viewing plane. Figure 22 shows an example of two sets of volumetric data using texture 
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slicing. The white slices are one volume and the gray slices are another. The image on 

the right show the slices stacked together in depth sorted order. The only potential issue 

with depth sorting texture slices is the potential for slices to have the exact same depth 

and appear at the exact same location. 

 

Figure 22: Texture slicing depth sorting example 
 

This method of depth sorting texture slices has been used effectively since the 

1990s. VIVIAN was one of the first volume rendering tools that incorporated depth 

sorting for accurate multivolume rendering on traditional workstations as well as virtual 

reality hardware [127]. Patel, et al., built a similar system for a virtual reality environment 

using depth sorted texture slices. Their approach focused on creating useful transfer 

functions for providing the best visualizations of tumors [128]. 

Robler, et al., built a two-step renderer that first sliced all the volumes in the 

scene parallel to the viewing plane before sorting them by depth. In the second step, 

they combined the slices in a back-to-front order, calling the shader specific to that slice. 

This allowed them to visualize individual volumes in a specific way while still rendering 

the entire scene [129]. This method was expanded a year later by mixing direct volume 

rendering for one volume and iso-surface rendering for the other. The same two step 

rendering process was performed with the iso-surface also being view-align sliced [130]. 
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Wilson, et al., addressed this challenge when they experimented with three 

different methods of data mixing: 1) chose one volume’s value as the only value, 2) use 

a weighted function to combine all the values, or 3) use a single volume value each for 

the red, green, and blue color channels. The results of this research showed uses for 

each of the three mixing methods [131]. 

One of the first researchers to use raycasting to render multiple objects in a scene 

was Levoy [132]. Specifically, it was to render polygonal models with volumetric data. 

This simplified the problem of raycasting multiple objects because depth sorting 

polygonal data was already well defined. 

Kreeger and Kaufman created a rendering method for both a volume and 

polygonal geometry. When rendering polygonal geometry with volumes, it is typical to 

slice the geometry into sub-geometries based on the view-aligned slices. This gives a 

natural depth ordering of objects. Kreeger and Kaufman instead create bins between 

each slice for the associated geometry. This reduces the number of triangles being sent 

to the graphics card [133]. 

3.3.2 Depth Peeling 
Unlike texture slicing, it is not as inherently easy to render multiple volumes using 

raycasting because there is no clearly defined depth order. Depth Peeling is the most 

commonly used algorithm for depth sorting volumetric data and is critical to raycasting 

multiple volumes correctly. Depth Peeling was initially conceived to help correctly render 

3D scenes with transparency. It requires rendering the same scene multiple times, 

where each time through, another layer of depth is removed from the scene until the 

entire scene is described in layers. These layers are then composited together in the 
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correct depth order to show accurate transparency [134]. This allows Depth Peeling to 

be used for correct sorting of volumetric data. 

Plate, et al., used Depth Peeling with their “lenslets” solution for multiple volume 

rendering. The “lenslets” are created by dividing the volumetric data into geometry 

containing either one volume or multiple volumes and then depth sorted using Depth 

Peeling [135]. Dividing the scene up into single or multiple volume geometry allowed 

single “lenslets” to be rendered with faster traditional raycasting approaches. 

Brecheisen, et al., presented another interesting use of Depth Peeling by 

alternating it with raycasting. Depth Peeling was used to define one layer of depth in the 

scene that was then raycast. This process was continued until the entire scene was 

traversed. This is one of the first methods to successfully visualize multiple volumes with 

transparent geometry and concave clipping objects [85]. 

Kainz, et al., used the GPU programming language CUDA to create a multi-

volume and polygon rendering method using Depth Peeling. The method projected all 

the polygon triangles into screen space and then used Depth Peeling to depth sort the 

scene before raycasting [136]. 

3.3.3 Multi-volume Raycasting 
Future researchers approached this problem using the assumption that the 

multiple volumes were correctly aligned in 3D space and never moved in relation to each 

other [137–139]. This assumption was built upon the use of multimodal data in medical 

imaging. For example, an MRI scan may be performed to gather anatomical data and an 

electroencephalogram (EEG) might be performed to gather brain activity. These two 

modes of data could be combined to show where exactly on the patient’s brain the 

activity is happening. Aligning the two datasets is critical to accuracy and can be 
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performed using anatomical or other physical markers in the data. Once the volumes are 

aligned in 3D space, the ray cast into the volume samples once from each volume at 

every sampling point along the ray. The problem then became mixing the values from 

each volume to achieve the best result. 

Cai, et al., looked at mixing the volume data in three different ways [137]. The first 

looked to mix the intensity values from each sample. The second looked to mix the color 

values from the color transfer functions at each sample. The third method looked to 

render each volume separately and then combine the resulting images together to form 

a single image. Manssour, et al., proposed a volume rendering framework that used the 

second mixing method proposed by Cai, et al., where the two volume values were 

combined after the color was determined for each sample [138]. The color combination 

was achieved through the use of a weighting function. Beyer, et al., used the same 

approach for data mixing but also allowed a single volume’s value to be the final sample 

color instead of mixing the two values [139]. The ability to use only a single volume’s 

value was found to be useful when certain characteristics were more important than 

others (e.g., EEG brain activity would be more important to visualize than the skull). 

All of the previous examples only looked at mixing the color for each sample. The 

obvious approach is to combine the color channels of the volumes into a single image. It 

is possible to visualize data using the opacity channel as well. Manssour, et al., mixed 

two volume datasets by using one volume for opacity and the other volume for color 

[140]. Wilson, et al., while a texture slicing method, rendered three volumes by using one 

volume for each of the color channels (e.g., one volume for red, one volume for green, 

and one volume for blue [131]). While interesting approaches, encoding too much 

information into a single image can confuse users and hide more data than it reveals if 

not used carefully. 
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Depth Peeling may be the most popular, but it is not the only method for depth 

sorting a scene for proper rendering. Grimm, et al., proposed a bricked memory method 

of storing multiple volumes in a depth sorted way [141]. This method attempted to speed 

up the raycasting process by breaking up the scene into subsections that held 

intersecting volumes and subsections that held a single volume. This allowed a faster 

single-volume renderer to be used when possible and a slower multiple-volume renderer 

to be used when required. 

3.3.4 Scene Graph Methods 
Multi-volume rendering has started to face issues with managing and manipulating 

each of the volumes within the scene. Computer graphics faced a similar problem when 

trying to render multiple 3D polygons in a scene. It becomes complex to manage and 

manipulate specific objects within a scene as the number of objects increase. To 

address this problem, scene graphs were created to manage the many spatial 

representations of a 3D scene.  

A scene graph is a collection of 3D objects, transformations, and graphical 

elements called nodes. Each node, other than the root node, can have multiple parents 

and/or children associated with it. This allowed complex geometry to be grouped 

together by creating a group parent node for all the geometry child nodes. Any 

manipulation applied to the group node (parent) would impact all the geometry nodes 

(children). This structure allowed for a clearly defined hierarchy for managing large 

scenes and for transformations (i.e. rotations, translations, or scaling) to be applied 

quickly and efficiently. 



www.manaraa.com

53  

A few researchers have taken this idea of a scene graph and tried applying it to 

volumetric scenes. If properly implemented, this could potentially take care of all the 

depth sorting issues and clarify the process of combining volume data together. 

Nadeau attempted the first volumetric scene graph in 2000 [142]. The goal was to 

create a clear graphical way to represent how volume data was being mixed together. 

Each volume was represented by a leaf node in the scene graph and all mixing 

operators were group nodes. This graphically showed which volume datasets were 

being combined using a specific weight function for mixing data. One significant issue 

with this method is that the entire scene needed to be voxelized before rendering. This 

required finding a bounding volume for all datasets and decomposing that bounding 

volume into voxels for rendering. Therefore, voxels comprising each dataset must be 

converted into scene voxels for rendering, and the mapping is usually not a one to one 

translation. This process is computationally expensive and must be performed when the 

scene changes. 

Rößler, et al., proposed a method of rendering where a multi-volume scene is 

broken up into sub-volumes based on where the volumes overlap [143]. A scene graph 

is used to represent all of these sub-volumes and the information needed to render 

them, similar to Nadeau. Breaking up the scene into single and multiple volume sections 

allows optimizations to be made in rendering by using a single volume renderer when 

possible and a multiple volume renderer only when necessary. This approach works well 

when the scene does not change frequently. Every time the scene changes, the process 

of subdividing the volumes into single and multiple must be performed. The scene graph 

structure also allows unique shaders to be generated for the sub-volumes based on the 

rendering characteristics required. Therefore, every volume can be rendered differently 

and the scene graph will manage this. 
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3.3.5 Other Multi-volume Methods 
The previous methods all approached the problem of rendering multiple volumes 

with the assumption that volumes would intersect each other. When that is not the case, 

a more straight forward volume rendering approach can be used. 

Leu and Chen created a tool named TROVE built upon this assumption [144]. In 

an effort to reduce the memory footprint required for volume rendering, TROVE would 

only render a single volume at a time. By depth sorting the volumes based on their 

bounding boxes, TROVE could start rendering each volume in back-to-front order into 

the final image. 

Bruckner and Gröller used a similar approach to create their exploded view volume 

renderer [90]. Their tool broke up a single volume into multiple sub-volumes and then 

arranged the sub-volumes in the scene so no sub-volume would occlude the others. For 

example, in the case of a human head, the skull might be broken up into three sub-

volumes and the brain might be one sub-volume. The sub-volumes of the skull could be 

moved away from the brain to allow someone to view the brain unobstructed. Adjusting 

the sub-volumes in this way assured that no sub-volume would intersect with another 

and simplified the rendering process by allowing the sub-volumes to be sorted along a 

ray and composited to a final image. 

3.4 Methods to Improve Understanding of 4D Data  
“The ability to extract objective and quantitatively accurate information from 3D 

biomedical images has struggled to keep pace with the ability to produce the images 

themselves." –Robb [145] 

The rendering methods behind volume rendering are complex and fascinating, but 

its purpose of conveying useful information must never be forgotten. The ability to 



www.manaraa.com

55  

capture volumetric data is useless without techniques for effectively exploring the data to 

discover importance. The use of volume rendering for medical training [146] as well as 

diagnoses and treatment will only grow in the future. Effective visualization techniques 

are what allow medical professionals to make life-changing decisions for patients. 

The most common volume visualization technique defines color and opacity 

through the use of transfer functions. The color and opacity transfer functions map a 

single intensity value to a set of red, green, blue, and alpha (RGBA) values. The purpose 

of coloring is not to provide photo realistic images, but to provide sufficient contrast to 

identify features of interest. The use of coloring was discussed in Section 2.3.5 and its 

implementation can be seen in almost every volume rendering reference in this paper. 

Robb provided an excellent analysis of various visualization methods for 

volumetric data [145]. Volumetric visualization has grown since Robb’s analysis in 1999, 

especially for visualizing 4D data. These new methods can be broken into three different 

categories, Region of Interest (ROI) visualizations, visualizing 4D data in three 

dimensions, and 4D animation visualization. 

3.4.1 Region of Interest (ROI) 
A Region of Interest is a subset of a complete dataset that is identified for a 

specific purpose. In the case of medical imaging, the ROI is often a tumor or other 

ailment requiring the attention of a medical professional. In 2D data, attention is often 

brought to the ROI by highlighting or circling. In 3D and 4D data, this becomes more 

complex, especially with a dense block of data as in the case of volume data. 

VROOM was one of the first rendering tools to look at visualizing an ROI differently 

than the rest of the volume. The ROI was rendered at a higher visual quality than the 

remainder of the volume. This provides a clearer representation of the ROI and a fuzzy 
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representation of the remaining volume [147]. Zhang, et al., used a similar approach with 

raycasting, where the sampling size decreased to provide a higher resolution image for 

the ROI and increased for the rest of the volume [148]. 

Hauser, et al., used Maximum Intensity Projection (MIP) to render the ROI and 

Direct Volume Rendering to render the rest of the scene [149]. Traditionally, MIP is 

designed to make the maximum intensity values stand out. In this case it was used to 

make an ROI stand out against the rest of the volumetric data. This approach was tested 

on both 3D and 4D animated data with relative success. This research was later 

extended using the “Focus-Plus-Context” visualization method, which makes non-

important areas of data transparent to provide context while highlighting the important 

parts. In this case, transparency was applied to the non-ROI areas of the volume while 

the ROI was emphasized as non-transparent [150]. 

To study cardiac motion, Enders, et al., assumed that the ROI was anything that 

moved in the scene [151]. They proposed a method of visualization that clipped out any 

data that did not meet a specific threshold for movement. This allowed them to visualize 

a heart beating without distraction from any of the surrounding tissue. 

In a slightly different approach, Bruckner and Gröller emphasized the ROI by 

generating an exploded view instead of clipping the surrounding tissue [90]. The ROI 

was revealed by subdividing the volume into sections that either were the ROI or were 

not. The non-ROI sections were moved away to reveal the ROI but not removed to 

provide spatial context. 

3.4.2 Compressing 4D Volume Data for 3D Visualization 
It has become more common for volumetric data to include a time component 

making it 4D. This trend has only accelerated in recent years making visualizing 4D 
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volumetric data increasingly important. The first attempts to visualize 4D volumetric data 

relied on techniques for compressing the data into single 3D “timesteps”. The first 

compression techniques like contour lines [152] were borrowed from other areas of data 

visualization. The 4D compression techniques have become more complex with the use 

of hyper-slicing and advanced compositing methods. Hyper-slicing works on the 

principle of projecting data from a higher dimension to a lower one. This technique 

projects a 3D volume onto a 2D image plane for viewing. With 4D data, a 3D hyper-

plane is defined and the 4D data is projected to this plane. A 3D hyper-plane is 

essentially a 3D volume that can be rendered using traditional volume rendering 

techniques. 

Neophytou and Mueller presented Body Centered Cubic (BCC) sampling, a 

change to the traditional Cartesian sampling of a volume space, to compress the 

memory footprint [112]. This method of hyper-slicing no longer provided a full 4D view; 

requiring motion blurs to be applied to visualize changes in time.  

Woodring, et al., also used hyper-slicing to visualize 4D data as a 3D object [153]. 

They combined the hyper-slicing with color interpolation to better visualize how the data 

changed over time. The oldest time step was colored blue, the most recent was colored 

red, and the medial was green. All other time steps were interpolated between those 

three colors [154]. This work was integrated into a visualization tool using boolean 

operators to combine multiple time steps into a single 3D scene. A user interface 

allowed boolean operators to be combined to create complex volume results. These 

were then visualized using color and opacity interpolation methods to show changes 

over time [155].  

Other compression techniques involve using flow lines to show how fluid moves 

over time. Helgeland and Elboth used an anisotropic diffusion method, which smeared 
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an input-texture along a vector field to produce flow lines [8]. Other techniques use 

silhouettes, transparency, “speedlines,” or glyphs to represent changes in properties 

over time [156]. 

3.4.3 4D Animations 
Another approach to visualizing 4D data is to use animations to represent the time 

component of the data. While animation is logical to visualize time varying data, it is not 

always the most efficient given the amount of time required to watch the animations or 

effective given the difficulty in comprehending trends between multiple timesteps. 

Therefore, animations must be used judiciously for the best result. 

The first implementations animating volumetric data fought with rendering speeds 

and used isosurface rendering and compression algorithms to achieve acceptable frame 

rates [157]. Sonograms were a popular volumetric technology to take advantage of 4D 

volume rendering [158,159]. The research showed animating the volumetric data had a 

significant benefit for medical applications like identifying congenital heart defects [158]. 

Later research used GPU shaders to animate 4D CTs paired with electrocardiograms 

(ECGs) to visualize cardiac processes with similar benefits [148]. 

Tory, et al., combined animation with color interpolation and glyphs techniques in 

an attempt to create more useful visualizations [160]. Figure 23 shows the direct volume 

rendering of the anatomical kidney data combined with changes in time represented by 

color. Figure 24 shows the use of glyphs to represent flow data overlaid on the same 

kidney data. Surprisingly, this research found that color and glyphs were only useful for a 

specific type of changes in the data. Color was useful for representing small, localized 

changes in the data, but was not ideal for large, global changes. Glyphs on the other 
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hand, were not effective for small, local changes because the changes were too small to 

be seen. 

  
Figure 23: Kidney CT scan with time varying data 

represented by color [160] 
Figure 24: Kidney CT scan with time 

varying flow data represented by 
glyphs [160] 

 

The visualization methods presented show many different approaches to 

visualizing volumetric data with no one best solution. Johnson looked at multiple case 

studies using visualization for medical data in 2012 and concluded that visualization 

capabilities lag far behind the ability to produce data [161]. This shows there is still a 

need for good visualization tools and new visualization methods. 

3.5 Current Volume Rendering Tools 
The potential for volume rendering has not gone unnoticed in the academic or 

commercial markets. There have been multiple volume renderers created both 

academically and for the commercial market, with most focused on medical imaging 

applications. Typically, advanced volume rendering techniques are designed in 

academic arenas where the implementation is a one-off solution. Unfortunately, these 

one-off solutions rarely make their way into commercial tools where medical 

professionals can make use of them. The tools are rarely built with end developers in 

mind, so the interfaces are difficult to work with and extend to other applications. When 

commercial companies do implement an advanced rendering method in their tool, it is 
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generally locked down to extending functionality and medical professionals are charged 

large sums to use them.  

Volume rendering tools are generally broken down into two types, static or 

dynamic, based on the type of data they visualize. Static volume renderers are typically 

used to visualize anatomical data in medical applications. Static volume data is 

comprised of an x,y,z position and a property value, v. Dynamic volume renderers are 

typically used to visualize time-varying data like flow or brain activity. Dynamic volume 

data adds an additional time, t, component to the static volume data. The renderers can 

also be broken down as open source or closed source implementations. 

3.5.1 Static Data Volume Renderers 
Static data renderers visualize a single high-resolution scan for anatomical 

purposes. This is the most common type of volume renderer as the number of static 

scans performed currently greatly outnumber dynamic scans. 

One commercially available and open source renderer is Slicer. Slicer is a cross-

platform (BSD-style license) renderer working on Mac, Linux, and Windows. Slicer 

provides extensibility through the use of plugins. It is an open source project that is 

updated approximately once a year. 

There are many more commercially available, closed source, volume renderers 

today than there were even five years ago. Some of the more notable closed source 

commercial renderers are BodyViz, CTVox, DICOM-AVC, and ScanIP. BodyViz is a 

Windows and iOS volume renderer used in universities for anatomy instruction and in 

hospitals for surgical planning. CCTV and DICOM-AVC are both mobile device volume 

renderers available for free on iOS. The customer reviews for both volume renderers are 

below three out of five stars as of this writing, indicating there is some improvement 
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needed in the mobile volume rendering area. ScanIP is a Windows desktop volume 

rendering solution focusing on Computer Aided Design (CAD) models and 

Computational Fluid Dynamics (CFD) models as well as medical data. The focus on 

CAD and CFD is apparent in their interface design choices and the powerful analysis 

tools available with the software. 

Academics have been creating volume rendering tools for years that rival the 

commercial tools in many respects. Sinus Endoscopy is a volume rendering tool 

developed at Otto-von-Guericke University of Magdeburg to plan endoscopic sinus 

surgeries. GPU raycasting is used to provide an accurate representation of the complex 

inner workings of the patient’s nasal cavity [162]. Academics at Vienna University in 

Austria and Christian Michelsen Research in Norway created a virtual reality volume 

renderer that integrates CT scans and simulated radiotherapy dose distribution data into 

a single rendered volume for advanced treatment visualization [128]. ImageVis3D was 

created at the University of Utah and is a free cross-platform volume renderer available 

on Windows, Mac, Linux, and iOS. The program was developed by the NIH/NIGMS 

Center for Integrative Biomedical Computing (CIBC) to be open source and useful for 

developers to extend the functionality [161]. Voreen is another open source volume 

renderer that began as an academic project at the University of Munster, Germany and 

supports Windows, Linux, and Mac operating systems [156]. The open source and 

cross-platform nature of Voreen has made it a popular tool for academics looking to do 

research in medical visualization with over 400 articles returned by Google Scholar. 

The Volume Image Processing and Rendering Engine (VIPRE), was work created 

at Iowa State University to attempt to address the issue of moving academic research in 

volume rendering into common use. VIPRE was designed on an open source core with 
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the ability to run across desktops, iOS devices, and immersive virtual reality clusters 

[2,163,164].  

3.5.2 Dynamic Data Volume Renderers 
Dynamic data renderers, often referred to as 4D volume renderers, visualize 

multiple lower resolution scans to visualize things like blood flow or brain activity over 

time. With dynamic volume renderers, the size of the data alone is a difficult problem to 

solve with a linear increase in the size of the data with each new time step. Another 

challenge is the different ways 4D data can be visualized. Some of the more common 

4D volume renderers are Siemens’ syngo, EnSight, Osirix, MeVisLab, and Vaa3D. 

 From a closed source, commercial standpoint, Siemens’ syngo, Amira, and 

EnSight are all popular tools. Siemens is very involved with medical visualization 

technology with activities ranging from building MRI scanners to developing software to 

visualize the scans themselves. Syngo is their visualization software used for processing 

and visualizing fMRI data. It is a Windows based software, but can also be viewed 

across platforms using a web browser.  

Amira, is a software package developed by FEI Visualization Sciences Group for 

visualizing 3D and 4D micro-CT, PET, and Ultrasound data. One of the nicer features is 

their automatic segmentation algorithm for dividing up volumetric data into objects of 

interest. It is also one of the few software packages to claim support for Virtual Reality 

CAVE systems and stereo rendering. However, it looks like both of these features are 

not easily enabled out of the box according to their documentation. 

EnSight, is a Computer Aided Engineering (CAE) tool used for visualizing flow 

data in engineering analysis such as Computational Fluid Dynamics (CFD) simulations. 

This is fundamentally an engineering tool and does not claim support for medical 
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imaging data, even though it would potentially work to view it in the correct file format. 

EnSight is the other volume rendering software that claims support for VR CAVES and 

stereoscopic rendering. Again, this functionality does not come standard and is an 

increase in the licensing cost. 

Fortunately, there is free and open source software available for volume rendering 

including OsiriX, MeVisLab, and Vaa3D. OsiriX is a FDA approved volume renderer that 

started as an academic project and then moved to an open source development strategy 

supporting Mac OS X and iOS. OsiriX is popular with Mac users in the medical 

community, but their lack of cross-platform support and extensibility, prevent it from 

becoming more widely adopted, especially by developers. 

MeVisLab is an open source visualization tool that is built in a modular fashion to 

allow developers and researchers to extend the software’s abilities by adding or 

replacing modules. It provides cross-platform support for Windows, Mac, and Linux PCs. 

From an open source standpoint, it is well maintained with feature releases coming 

approximately every year. In 2011, a paper was wrote about using MeVisLab on six 

different 4D MRI use cases [165]. The additional module for 4D data visualization is 

unfortunately restricted to fluid flow visualization, which is not helpful in fMRI use. 

Vaa3D is a bit different in than it does not use direct volume rendering or 

raycasting, but uses ios-surface rendering algorithms like marching cubes and marching 

tetrahedrons [166,167]. It is a cross platform software application that provides 

extensibility through plugins. Recently it appears to have gone the way of so many open 

source projects and has lost contributors with the last software update published in 

2012. 

Most dynamic volume rendering applications are aimed at the traditional desktop 

computer because of the ease of programming and the advanced graphics hardware 
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capabilities currently available. NeuroPub is an fMRI visualizer that is built for iOS mobile 

devices. However, this implementation is extremely limited with specific requirements 

such as supporting 32-bit 64x64 MRI slices. Without providing the source code or plugin 

capabilities, there is no way to extend the functionality. While providing a 4D volume 

rendering capability on a mobile device is excellent, it is too limited to be useful in its 

current state. 

All of the above software applications provide 4D volume rendering functionality in 

some capacity or another. Most of these tools do not use raycasting for the renderer, but 

instead rely on more computationally efficient rendering methods. This is especially true 

when discussing mobile devices and immersive virtual reality, where there are currently 

no 4D volume raycasters available. 

3.6 Research Issues 
The literature review of volume rendering tools has shown that significant gaps 

exist for general 4D volume visualization. There are currently no open source or 

commercial 4D volume raycasters available for virtual reality or mobile devices. It is 

therefore necessary to investigate the feasibility of visualizing generic 4D functional 

volumetric data across dissimilar platforms (desktop, mobile, and virtual reality). Out of 

this general need, four research issues have been identified that will be addressed in 

this research: 

1. Explore the feasibility of a generic NIfTI data input capability on 

desktop, VR, and mobile device platforms.  

Volume rendering of functional imaging data is often limited to the datasets 

available. NIfTI data is one of the most common file types used to store 
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functional data. There is currently no object-oriented tool available for 

developers to use for loading generic NIfTI data.  

2. Assess the feasibility of displaying functional medical data across 

desktop, VR, and mobile device platforms. 

One of the most powerful aspects of functional data is the ability to observe 

changes in the human body over time. There have been many methods 

proposed to visualize the time component in functional data. This research 

will develop a method for animating functional brain activity data. 

3. Real-time visualization of high-resolution structural data and low-

resolution functional data at the same time. 

Due to hardware limitations of scanning technologies like MRI, fMRIs can 

consist of a single high-resolution structural volume and a series of low-

resolution functional volumes. Effectively combining both structural and 

functional data into a single visual is a great challenge that can provide 

significant advantages in understanding the data. Techniques of multiple 

volume rendering will be investigated and one method will be implemented 

and tested for real-time interaction. 

4. Develop a GPU-based 4D volume raycaster for mobile devices 

supported by the iOS platform. 

Mobile devices are carried by almost every medical professional around 

the world. Providing a mobile device solution for viewing 4D volumetric 

data would allow medical professionals to show patients their data to 

explain ailments in the exam room. Building an interactive 4D volume 

renderer for mobile devices is challenging because of the underpowered 

processors and small amounts of memory. NeuroPub Visualizer is the only 
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iOS application with support for 4D volumetric data, but the implementation 

is very limited with restrictions like requiring power of two data only. 

Additionally, the methods used by NeuroPub Visualizer do not appear to 

be volume raycasting. Multiple techniques for 4D volume rendering will be 

developed and examined to determine the best method for 4D mobile 

volume rendering in real-time. 
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CHAPTER 4: VISUALIZING FMRI DATA USING VOLUME 
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4.1 Abstract 
Medical imaging technology has changed patient diagnosis since the first x-ray in 

1895 [4]. Powerful imaging technologies like Computed Tomography (CT), Ultrasound, 

and Magnetic Resonance Imaging (MRI) are now used daily. One study showed 

preoperative imaging for potential appendicitis reduced unnecessary surgeries by 87% 

[168]. With the 2015 Defense Budget including $47.4 billion for the Military Health 

System [169], enhanced use of imaging for improved patient care and cost reduction is 

critical. 

More recently, functional MRI (fMRI) technology was developed to extend medical 

imaging beyond 3D static models to capture physiological changes over time. Currently, 

fMRI is used for applications from examining beating hearts to mapping brain activity in 

real-time. fMRI has the potential to dramatically change how illnesses are diagnosed, 

planned for, and treated. 

Methods created for visualizing fMRI data in the academic realm have rarely made 

their way into commercial software toolsets. For example, there are no software libraries 

available for researchers to create their own fMRI visualization tools. Another 

consideration needs to be the visual manner (i.e., 2D, 3D, or 3D stereo) in which these 
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visual representations are created. Previous research on visualizing medical data has 

demonstrated improved understanding of spatial relationships when using stereoscopic 

3D over traditional 2D representations. This indicates that virtual reality may be a 

superior medium for visualizing fMRIs.  

This paper presents research to: 1) make readily available fMRI software libraries 

and 2) use these libraries to visualize fMRI data in immersive VR. The method was 

tested on a desktop computer as well as a large multi-walled VR system running off a 

cluster of computers. Preliminary results have indicated that visualizing fMRI data in VR 

can be done in a computationally efficient manner. Multiple fMRI datasets were used for 

evaluation by measuring load times and frame rates. 

4.2 Introduction 
Medical imaging was first discovered in 1895 with the first x-ray [4] and has 

dramatically changed the way medical professionals diagnose and treat patients. Newer 

imaging technologies like Computed Tomography (CT), Ultrasound, and Magnetic 

Resonance Imaging (MRI) are now used daily for patient diagnosis. The use of medical 

imaging has been shown to reduce errors during diagnosis. One study showed 

preoperative imaging for potential appendicitis reduced unnecessary surgeries by 87% 

[168]. With the 2015 Defense Budget including $47.4 billion for the Military Health 

System, enhanced use of imaging for improved patient care and cost reduction could not 

only improve patient care, but reduce costs for unnecessary procedures as well [169]. 

One medical imaging technology that has seen increased use in the last 20 years 

is functional Magnetic Resonance Imaging (fMRI). Functional imaging allows 

physiological changes of a patient to be viewed over a period of time. Specifically, an 

MRI scan captures 4D time-varying dynamic views rather than 3D static ones. Currently, 
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fMRI is used for applications from examining beating hearts to mapping brain activity. 

fMRI has the potential to dramatically change how illnesses are diagnosed, planned for, 

and treated. 

One issue with the expanding use of fMRI technology is the lack of visualization 

tools available. Most advanced visualization methods for fMRI are created in academic 

research but have rarely made their way into commercial software toolsets. The toolsets 

that do provide fMRI visualization do not allow researchers to create new methods within 

their system. This results in researchers building custom solutions to test new methods, 

often only working on a specific dataset or those from a specific fMRI machine. 

Another issue to consider with fMRI data is the visual manner that the data is 

presented. Most toolsets use 3D visuals to display fMRI data but very few are designed 

for stereoscopic 3D. This is an oversight considering previous research on visualizing 

medical data has demonstrated improved understanding of spatial relationships when 

using stereoscopic 3D (i.e., immersive virtual reality) over traditional 3D representations 

[170]. This research indicates that immersive virtual reality (VR) may be a superior 

medium for visualizing fMRI data. 

There are many different types of hardware to consider when working with VR. 

High-end cave automatic virtual environments (CAVEsÔ) and head mounted displays 

(HMDs) provide the highest quality immersive experience at a prohibitive cost. Lower 

cost virtual reality solutions such as the Oculus Rift provide an acceptable VR 

experience at a much more obtainable cost. Companies like Facebook are jumping into 

the low-cost market [34] potentially opening the doors to experience VR on more 

platforms than ever before. 

This paper presents work done to widen the use of fMRI by creating the Volume 

Image Processing and Rendering Engine for fMRI (VIPRE-fMRI), a readily available 
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software Application Programming Interface (API) to render, view, and interact with 

functional medical imaging data in immersive VR. The challenges of designing a library 

to work across multiple operating systems (e.g., Windows, OS X, and Linux) as well as 

multiple hardware platforms (e.g., immersive 6-sided CAVEÔ and desktop computer) 

will be discussed in detail. The resulting applications will then be assessed for load 

times, frame rates, and other metrics across multiple fMRI datasets. 

4.3 Background 
MRI imaging technologies generate 2D cross-sectional slices of a patient’s body 

along a single axis, typically from head to feet. These 2D slices can then be combined to 

create a single 3D block of data. This is referred to as volumetric data. Figure 25 show 

the process of capturing 2D anatomical slices along the axis of a body and combining 

them together to form a single 3D block of volumetric data. 

 

 
Figure 25. Process of obtaining a 3D volumetric dataset from 2D anatomical slices 

MRI technology was first discovered in 1946 by Felix Bloch and Edward Purcell, 

but was not used for imaging purposes until the early 1970s [6]. MRIs use strong 

magnetic fields and radio waves to measure tissue densities in the human body. The 

density information is visualized as a set of 2D slice images of the patient. The radio 

waves are used to resonate magnetically charged nuclei like Hydrogen (1H) and the 

resulting resonance is used to create the 2D slices [7]. 
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While MRI imaging technology has been around for the last 50 years, fMRI 

technology has only been available for the last 20. Functional MRIs are most often used 

for brain activity scans, but that is far from their only use [28]. This technology has 

impacted research in areas such as science, clinical practice, cognitive neuroscience, 

mental illness [30]. 

4.3.1 Volume Rendering 
A volumetric dataset, like fMRI data, does not contain any defined surfaces or 

edges, therefore surface rendering techniques are inadequate to use for visualizing 

volumetric data. Instead, a different rendering method known as volume rendering is 

required. 

There are five main categories of volume rendering with their own advantages and 

disadvantages. Iso-surface rendering attempts to reduce the complexity of volume 

rendering by representing the volume data as a surface comprised of geometric 

primitives [11,12]. Image Splatting is a direct volume rendering method using 

overlapping basis functions to represent the voxels [13–15,171]. Shear Warp determines 

the face of the volume data that is most parallel to the viewing plane and then casts rays 

orthogonally from the base plane through the data. The resulting image is then projected 

onto the viewing plane [18,19]. Texture Slicing generates viewport-aligned slices parallel 

to the viewing plane and then composites them together for a final image [20,21]. 

Raycasting is a direct volume rendering method that casts rays in the viewing 

direction from each pixel of the screen. Figure 26 shows a simplified version of 

raycasting with the user’s eye on the left looking at the viewing plane. The rays are cast 

through the volume starting at the viewing plane and moving right through the volume. 

The rays sample the volume and composite these samples to obtain a final pixel value. 
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Of the five methods described, raycasting is generally considered to achieve the best 

visual representation. This research will utilize a raycasting implementation [22,23]. 

 
Figure 26. Example of raycasting with rays being 

cast from the viewing plan on the left through the volume 
on the right 

Volumetric raycasting typically goes through a rendering pipeline similar to that 

seen in Figure 27. The actual pipeline itself might differ depending on the application or 

the type of data being used, but the basic pipeline is the same for all volume renderers. 

Segmentation looks at dividing the volume data into sub volumes. This is often used for 

things like identifying tumors. Gradient computation finds all the edges in the volume to 

be used in the shading step to improve depth perception. Resampling is the process of 

stepping through the volume and sampling the volume intensity at each step along the 

ray. This sample is then classified to determine whether it should be used in the final 

image. Classification is typically done using opacity transfer functions that map the 

sample intensity with an opacity, how transparent the sample will be in the final image. 

The sample can then be given a red, green, and blue, color value using any number of 

different color transfer functions. The goal of coloring is not to achieve photorealism but 

to make specific anatomical features stand out during viewing. The sample can then be 

shaded using any number of shading techniques with Phong shading being a popular 
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choice for its computational efficiency. The final step composites the current sample with 

the previous samples taken along the ray to achieve a final pixel color to display.  

 

 
Figure 27. Volume rendering 

pipeline example 

 

4.3.2 4D Volume Rendering Tools 
An effective way to categorize the tools available for visualizing 4D volumetric data 

is closed source and open source. Siemens’ syngo, Amira, and NeuroPub are closed 

source visualization tools. Syngo is Siemen’s visualization software used specifically for 

processing and visualizing fMRI data. It is a Windows based software, but can also be 

viewed across platforms using a web browser. Amira is a software package developed 

by FEI Visualization Sciences Group for visualizing 3D and 4D micro-CT, PET, and 

Ultrasound data. NeuroPub is the lone mobile application that could be found at the 

writing of this paper to provide fMRI visualization. However, the implementation is 

extremely limited with requirements like only supporting 32-bit 64x64 pixel slices. 
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There are three commonly used open source 4D volumetric visualization tools, 

Osirix, MeVisLab [165], and Va3D. OsiriX is an FDA approved volume renderer that 

started as an academic project and then moved to open source development supporting 

Mac OS X and iOS. The MeVisLab tool is built in a modular fashion to allow developers 

and researches to be able to extend the software’s abilities by adding or replacing 

modules. The module for 4D data visualization is unfortunately restricted to fluid flow 

visualization, which is not entirely helpful for visualizing fMRI data. Vaa3D is a cross 

platform tool that uses iso-surface rendering instead of direct volume rendering 

algorithms [166,167]. 

All of the above tools provide 4D volume rendering in some capacity or another. In 

general the closed source tools are limited in their extensibility because they do not 

provide source code nor plugin capabilities. However, the closed source tools are 

designed to specifically visualize fMRI data unlike the open source tools Osirix and 

MeVisLab. Vaa3D and MeVisLab allow extension through modules and plugins 

respectively, but this functionality is still limited to within the context of the application 

itself. Even if a suitable plugin could be created, the application is limited by a user 

interface that is not optimized for interacting with fMRI data, resulting in a poor user 

experience. There is also the possibility of a tool becoming outdated or discontinued as 

appears to be the case with Vaa3D where the latest recorded software update was 

published in 2012. 

All of these 4D volume rendering tools have their drawbacks. There is no single 

cross platform tool that provides advanced rendering functionality in an easy to 

implement and extensible library or API. Such a tool would allow researchers to build 

new rendering methods off a common platform while providing developers with a tool for 

creating new types of fMRI applications. 
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4.3.3 4D Volume Rendering in VR 
Amira and EnSight are the only tools researched at the time of this paper that 

provided 4D volume rendering support in an immersive VR environment. Neither tool is 

designed to specifically visualize fMRI data, but they both look to have the necessary 

building blocks. The VR support for both systems does not work out of the box, but 

requires extensive configuration. In the case of EnSight, a whole new licensing cost is 

associated with allowing VR support. Both the low number of tools and the additional 

support costs speak to the difficulty in creating a 4D volume renderer for immersive VR 

systems. 

Previous academic research on 4D volume rendering medical data in immersive 

VR systems looked primarily at volume rendering multiple volumes. The VIVIAN system 

[127] and the work done by Patel, et al., [128] used an orthogonal texture slicing volume 

renderer in a CAVEÔ environment. Academics at Vienna University in Austria and 

Christian Michelsen Research in Norway created a virtual reality volume renderer that 

integrates CT scans and simulated radiotherapy dose distribution data into a single 

rendered volume for advanced treatment visualization [128]. 

The volume rendering technologies outlined in this section show a sampling of the 

many advances in the field. The advanced rendering methods from research rarely 

make it into commercial applications because researchers built custom one-off solutions. 

The rendering tools available are not easily extensible to implement new methods. 

These commercial and open source rendering tools fail to provide advanced rendering 

methods in a cross platform tool allowing development for multiple devices. If a 

developer wants to build a fMRI visualization application for VR they must learn and use 

one rendering library, but they must learn a different rendering library if they want to 

build the same application for a mobile device or a desktop computer. A single cross 
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platform volume renderer that allows researchers to test new rendering methods as well 

as providing developers with tools for developing cross platform fMRI applications is 

needed. 

4.4 Methodology 
VIPRE-fMRI was created to address this need for a single cross platform 4D 

volume rendering application programming interface (API). An API is a set of routines, 

protocols, and tools that are used to build software applications. They can be thought of 

as building blocks for a software developer that can be combined in an infinite number of 

ways to create an application. In this case, VIPRE-fMRI provides routines for things like 

processing fMRI files, creating new coloring modes, adjusting the rendering loop, and 

many more. Figure 28 shows an overview of the VIPRE-fMRI library architecture. The 

boxes at the bottom of the figure represent the lowest level systems and libraries being 

used. The higher boxes are built using the lower boxes. For example, VIPRE builds 

upon OpenSceneGraph (OSG) which builds upon OpenGL. At the very top is the final 

visualization application using all the components. 

 
Figure 28. Simplified library architecture 

There are many different aspects of designing a cross-platform 4D volume rending 

API that must be considered to ensure compatibility and ease of use. When considering 
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design requirements, it was important to consider the hardware constraints faced both 

by academic researchers and military field personnel. Low cost commodity hardware is 

typically used by both groups with multiple operating systems powering this hardware. 

The harsh conditions faced by military personnel require reliable systems that can be 

supported for many years. Five design requirements were defined based on these 

constraints: 

1. Cross-platform support for Windows, Mac OS X, and Linux 

2. Stable API 

3. Real-time rendering (efficient) 

4. Support for desktops, laptops, and immersive VR platforms 

5. Encapsulate platform customization at the engine level 

 

The rendering engine’s graphics core was the decision with the most impact on all 

five requirements. On desktop computers, the low level rending API choice is typically 

between DirectX [172] and OpenGL [173]. DirectX is a Windows only API, while OpenGL 

is cross-platform supporting Windows, Mac, and Linux as well as mobile devices through 

OpenGL Embedded Systems (OpenGL ES). OpenGL has been around for over 20 years 

and is a C language based state machine implementation. The cross-platform support 

and long history makes OpenGL the best choice for VIPRE-fMRI.  

The low level nature of OpenGL provides developers with lots of customization 

options to harness every bit of computational power from the graphic processing unit 

(GPU). The downside to using OpenGL is that a code optimized for one GPU will not be 

optimized for a different GPU and may not work at all without coding changes. The 

complexity of OpenGL must be abstracted from the application level to make OpenGL 

code more portable between GPUs. VIPRE-fMRI does this by encapsulating OpenGL in 
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another API, OpenSceneGraph. This encapsulation allows a developer to call the same 

OSG routines on all devices and OSG will handle calling the correct OpenGL routines to 

achieve the optimal result on every GPU. 

4.4.1 Third-party APIs 
The third-party APIs were selected to provide OpenGL encapsulation as well as 

additional functionality. When considering third-party APIs for VIPRE-fMRI, it was 

important to consider licensing and the proprietary nature of the APIs so they could be 

used by both the military and academics. A key consideration for military use is they 

require a higher level reliability over longer periods of time. Therefore, for a third-party 

library to be considered it must meet these four requirements: 

 

1. Free and proprietary licensing terms (LGPL, BSD, MIT, etc.) 

2. Cross-platform support for Windows, Mac OS X, and Linux 

3. Large active development community 

4. 5+ years old 

 
The licensing restrictions for each API chosen were one of the most important 

elements to consider. Using free and proprietary licensing allows both academics, 

military, and commercial developers to take advantage of the outcomes of this research 

and helps to foster broader adoption. 

The last two listed requirements were added to ensure the third-party libraries 

used in VIPRE-fMRI will be supported and stable in the future. Large development 

communities and long life spans reduce the risk that third-party libraries might disappear 

in the near future. Based on these four requirements, OpenSceneGraph and VR Juggler 

were chosen for inclusion in VIPRE-fMRI. 
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4.4.2 OpenSceneGraph 
OpenSceneGraph (OSG) is an open-source, cross-platform graphics API for high-

performance applications. First created in 1999 by Don Burns and Robert Osfield [174], 

OSG has grown steadily with their latest stable release (Version 3.2.1) including 

contributions from 519 developers. 

The main reason OSG was selected for this project is that it encapsulates OpenGL 

functionality in an object-oriented framework that focuses on performance, scalability, 

portability, and productivity. OSG supports view-frustum culling, occlusion culling, 

OpenGL Shader Language (GLSL), and display lists, which are required for GPU 

raycasting implementations. Combining OSG’s windowing system independence and 

support for OpenGL means OSG will work across all required software and hardware 

platforms. 

Game engines, such as Unity3D, were considered instead of OpenSceneGraph 

because of their graphics power and intuitive graphical user interface. Unity3D is freely 

available and cross platform with an active development community. However, Unity3D 

was removed from consideration because it did not provided support for large graphics 

clusters like those that power VR CAVEÔ systems. 

4.4.3 VR Juggler 
VR Juggler is a cross-platform, open-source virtual reality software development 

environment designed for executing immersive applications across multiple hardware 

platforms [175]. Established in 1997 at Iowa State University’s Virtual Reality 

Applications Center, VR Juggler has seen continued use and development. VR Juggler 

can be integrated into many existing systems with support for multiple rendering APIs 

including OpenSceneGraph. 
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The main function of VR Juggler is supporting display and device abstraction for 

immersive hardware systems. This abstraction layer allows VR Juggler applications to 

be compiled once and run on multiple hardware configurations without recompiling. VR 

Juggler is also extremely efficient as it was shown to be one of the fastest cluster 

synchronization APIs available [176]. Large visualization clusters, like those used to 

power VR CAVEÔ facilities, are efficiently synchronized through the use of swap 

barriers, which ensures all cluster nodes swap their front and back buffers 

simultaneously. 

4.4.4 NIfTI File Reader 
4D volumetric data can be stored in various file formats such as, Analyze/SPM, 

MINC, AFNI, and NIfTI [31]. For fMRI brain scans, NIfTI is the most commonly used file 

format. A NIfTI file reader library was created to read in the available fMRI data. The 

library is built using C++ and the C++ Standard Library to be both lightweight and cross-

platform. The library converts a file path into a study object containing access to the 

header information as well as a C array of the raw image data. For this research, the 

library was extended to support retrieving the imaging data as a set of osg::Image 

objects for use with the VIPRE-fMRI rendering engine. The architecture allows 

developers to make calls to vipreStudy that in turn use the NIfTI file reader library to load 

and store fMRI datasets in a VIPRE-fMRI optimized way. 

4.4.5 VIPRE-fMRI Framework 
The third-party APIs were combined into VIPRE-fMRI, a cross platform 4D volume 

rendering API. The original VIPRE was proposed by Noon [2] but was limited to volume 

rendering a single 3D volume. This work extends VIPRE by adding 4D volume 

raycasting. VIPRE-fMRI supports Windows, Linux, and Mac OS X. The rendering is 
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abstracted from the developer, allowing different windowing APIs like Qt, Cocoa Touch, 

and VR Juggler to be used on their respective hardware platforms. A simplified version 

of the VIPRE architecture was previously shown in Figure 28. 

To test the validity of the VIPRE-fMRI architecture, two different applications were 

built. One for a large CAVEÔ environment and one for a commodity desktop computer. 

Both were built using the same base raycasting code with the differences being in the 

interaction and windowing systems. Both applications will be discussed in depth in the 

following sections. 

4.4.6 CAVEÔ Implementation Details 
The CAVEÔ implementation set up an OSG scene graph with clipping planes, a 

bounding box, and fMRI data groups under a series of transform nodes for manipulating 

the scene. There were also standard light and camera nodes. Within OSG, calls are 

made to set up GPU raycasting by creating a 3D texture from the fMRI volume data, and 

loading the vertex and fragment shader programs. OSG then handles all the OpenGL 

calls itself, abstracting the complexity from the developer. The result is a single OSG 

scene designed to raycast fMRI data. 

VR Juggler is then used to visualize this fMRI scene in a CAVEÔ environment. VR 

Juggler works by having a single instance of the application running on each node of the 

cluster. One of the nodes acts as the “master” node, in charge of synchronizing data 

across the rest of the “slave” nodes. The “slave” nodes are responsible for drawing their 

part of the scene based on a unique view frustum. A VR Juggler configuration file 

defines the nodes in the rendering cluster and passes in a view frustum for the instance 

of the application on each node to render. 
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Navigating around the scene and controlling the renderer is done through the use 

of a Logitech gamepad controller. The dual joysticks are ideal for navigating around 3D 

environments and the buttons allow quick access to change rendering features like 

rendering modes, windowing, coloring, and clipping of the dataset. VR Juggler is built on 

a rendering loop comprised of preframe, late preframe, and draw method calls. This 

allows the “master” node to synchronize gamepad input across the cluster using 

preframe and late preframe methods before redrawing the scene. 

Figure 29 shows a user standing inside the C6 six-sided CAVEÔ environment 

looking at MRI data using the immersive demo application. The user is navigating 

around using a wireless Logitech gamepad controller. 

 

 
Figure 29. Immersive VR application in a 

6-sided CAVEÔ environment 

4.4.7 Desktop Implementation 
The desktop application was built off the same raycasting renderer code with the 

only modifications being the windowing system used to display the results. Qt is a freely 

available user interface library that was used as the windowing system to display the 

raycasting results. OSG’s window independence allows VIPRE-fMRI to be rendered 

directly within an OpenGL widget provided by Qt. No other changes were required to the 
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VIPRE-fMRI rendering codebase. A graphical user interface was created around the Qt 

OpenGL widget to all users to adjust things like coloring and tissue density through the 

use of interface elements like button and slider bars. The mouse and keyboard 

interactions were also handled by Qt and passed to the VIPRE-fMRI renderer as 

needed. An example of the desktop application viewing fMRI data can be seen in Figure 

30. 

 

 
Figure 30. Desktop application visualizing a 

human brain 

4.5 Results 
The proposed 4D volume rendering library was tested on two different hardware 

configurations, a 2013 MacBook Pro and the C6. The C6 is the world’s highest 

resolution six-side VR CAVEÔ located at Iowa State University. Twenty-four Sony 4K 

projectors achieve 96 million pixels per eye. A 96 node rendering cluster comprised of 

NVIDIA Quadro 6000 graphics cards is required to feed the 24 projects. The C6 is uses 

the Red Hat Enterprise Linux operating system. The size of the cluster provides an 

excellent test bed for the 4D volume rendering library’s performance. The C6 uses an 
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Intersense ultrasonic tracking system for tracking objects in the CAVEÔ, specifically, the 

user’s head position.  

The immersive VR application was compared to the desktop application. The 

desktop application was evaluated on a 2013 MacBook Pro running OS X 10.10.3 with a 

2.6GHz Intel Core i7 processor, 16 GB of RAM, and a NVIDIA GeForce GT 750M 

graphics card. The desktop application was used as a baseline to judge the efficiency of 

the immersive VR application as well as showing the library’s cross-platform support 

includes a CAVEÔ, desktop computers, and two different operating systems. 

The efficiency of the 4D volume rendering library was testing using two different 

NIfTI data sets. The first data set is a single time step scan of a human brain comprised 

of 128 slices of 256 by 256 pixel data and will be referred to as “Dataset 1.” The second 

dataset is a fMRI brain scan comprised of 126 time steps with 24 slices of 64 by 64 

pixels at each time step and will be referred to as “Dataset 2.” Frame rates were tested 

both while rendering a single time step, referred to as “Static”, and while animating 

through the time steps, referred to as “Dynamic”. 

The data load times for all three systems can be seen in Table 1. The Dataset 2 

had a longer load time on average than Dataset 1. This is to be expected with Dataset 2 

being roughly 50% larger than Dataset 1. The load times for the C6 were three to four 

times longer than the Desktop condition. Evaluating the time difference between 

Desktop and C6 must consider that each node in the C6 using network storage instead 

of local storage. Given the C6 can load data from the network drive synchronously, the 

load time difference can be attributed to the network speeds. 
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Table 1. Average data set load times in milliseconds (ms) 
 Desktop C6 CAVEÔ 

Dataset 1 3352.8 11257.9 

Dataset 2 5195.6 15535.6 

 
 

The average frame rate for each application is shown in Table 2. Frame rate can 

be used to determine the computational efficiency of a system. Interaction is key to 

medical imaging and frame rates of 30 frames per second (fps) or higher are desired for 

good interaction. Both systems were tested using Dataset 1 as well as the Dataset 2 

while viewing a single static time step as well as animating through the time steps 

referred to as dynamic. The C6 application did not achieve the desired 30 fps, but still 

produced respectable 20 fps that allow real-time navigation with a slight lag. Neither 

implementation showed much difference in frame rate between datasets with the 

Desktop steady around 60 fps and the C6 steady around 20 fps. This would indicate that 

the raycasting implementation is similarly efficient regardless of rendering a static 

dataset (MRI) or animating a dynamic dataset (fMRI). While this result is interesting, it 

should be noted that the results could drastically change depending on the datasets 

used. 

 
Table 2. Average application frame rates in frames per second (fps) 

 Desktop C6 CAVEÔ 
Dataset 1Static 54.993783 20.000000 

Dataset 2 Static 60.935748 19.562180 

Dataset 2 Dynamic 60.223459 19.657370 
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4.6 Discussion 
 

This research presented VIPRE-fMRI, a cross platform 4D fMRI volume rendering 

library for visualizing fMRI data on multiple immersive VR hardware platforms. Two 

sample applications were built to test VIPRE-fMRI. The first platform was the world’s 

highest resolution six-sided VR CAVEÔ and the second platform was commodity 

desktop computer. The sample applications demonstrate the success of creating a 

single 4D volume rendering library capable of being used on multiple hardware 

configurations and operating systems. 

The most difficult aspect of building a cross-platform 4D volume rendering library 

was selecting tools (software libraries and languages) that would work across all the 

variety of systems. OpenGL and the GLSL shader language were chosen for this 

reason. OpenSceneGraph and VR Juggler were both chosen to abstract hardware 

differences from the software developer. VIPRE-fMRI utilizes OSG’s window 

independence in a way that allows developers to wrap the renderer in an OpenGL based 

windowing system with minimal effort. 

Frame rates show the library to be able to perform raycasting at 60 fps on 

commodity desktop hardware and 20 frames per second on a 96 node graphics cluster. 

The frame rates could be increased with several optimizations. Currently, the raycasting 

shader is a single program with multiple computationally expensive conditional 

statements. These conditional statements rely on user input to determine exactly how to 

render the data (e.g., Minimum Intensity Projection versus Compositing). Breaking the 

shader up into multiple shader programs and loading the program that is currently 

needed would eliminate the conditionals would improve frame rates. Neither application 

had any difficulties in loading in the datasets and in particular, synching that data across 
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a cluster. The frame rates and load times indicate that visualizing fMRI data in VR can 

be done in a computationally efficient way. 

The potential for medical imaging to reduce unnecessary surgeries can have a 

significant impact on the $47.4 billion 2015 budget for the Military Health System [169]. 

This potential depends on military medical professionals obtaining excellent diagnostic 

tools using advanced visualization tools. The last decade of mobile “app” development 

has proven that giving developers accessible development tools and libraries can 

produce thousands of new and innovative applications. Most current 4D volume 

rendering tools are closed systems that do not allow developers access to the underlying 

visualization methods. VIPRE-fMRI is designed to be an accessible cross platform 

library that will allow developers to build new and innovative visualization tools that can 

be used by military medical professionals to improve the health of active and retired 

military while reducing the overall health care cost. 

Future work on this library will look to use low-cost head mounted display (HMD) 

technologies like the Oculus Rift. Low-cost HMDs will greatly expand the reach of VR. 

Testing VIPRE-fMRI on Oculus would ensure the library is capable of handling a VR 

hardware platform that may dominate military and civilian life in the near future. VR 

Juggler is ideally suited to handle implementing VIPRE-fMRI on a HMD because it is 

designed to abstract the display hardware from the code. A single VR Juggler 

configuration file would be needed to move the immersive VIPRE-fMRI sample 

application for the C6’s displays to the Oculus display. To make the application 

immersive, a VR Juggler plugin would be needed for the Oculus Rift’s head tracking 

hardware (accelerometer, gyroscope, manometer, and near infrared tracker). This plugin 

would allow a user to move their head around and have the medical data respond like it 

was floating right in front of them. 
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5.1 Abstract 
Powerful non-invasive imaging technologies like Computed Tomography (CT), 

Ultrasound, and Magnetic Resonance Imaging (MRI) are used daily by medical 

professionals to diagnose and treat patients. While 2D slice viewers have long been the 

standard, many tools allowing 3D representations of digital medical data are now 

available. The newest imaging advancement, functional MRI (fMRI) technology, has 

changed medical imaging from viewing static to dynamic physiology (4D) over time, 

particularly to study brain activity. Add this to the rapid adoption of mobile devices for 

everyday work and the need to visualize fMRI data on tablets or smartphones arises. 

However, there are few mobile tools available to visualize 3D MRI data, let alone 4D 

fMRI data. Building volume rendering tools on mobile devices to visualize 3D and 4D 

medical data is challenging given the limited computational power of the devices. This 

paper describes research that explored the feasibility of performing real-time 3D and 4D 

volume raycasting on a tablet device. The prototype application was tested on a 9.7” 

iPad Pro using two different fMRI datasets of brain activity. The results show that mobile 
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raycasting is able to achieve between 20 and 40 frames per second for traditional 3D 

datasets, depending on the sampling interval, and up to 9 frames per second for 4D 

data. While the prototype application did not always achieve true real-time interaction, 

these results clearly demonstrated that visualizing 3D and 4D digital medical data is 

feasible with a properly constructed software framework. 

5.2 Introduction 
The last twenty years have seen medical imaging technology expand beyond the 

traditional viewing of anatomical features inside the body to functional medical imaging 

that looks at these features over time. Functional magnetic resonance imaging (fMRI) is 

by far the most common functional imaging modality and is heavily used in identifying 

brain activity [28].  

The impact of fMRI on the areas of science, clinical practice, cognitive 

neuroscience, mental illness, and society have been significant [30]. In 1992, there were 

zero publications with the word fMRI in the title, abstract, or a keyword. In 2005, there 

were close to 2500 research publications meeting those criteria, showing the growth in 

fMRI research being performed [29]. 

As the use of functional imaging technology increases, it is important to provide 

visualization tools that allow researchers and medical professionals to harness the 

power of fMRI. This research presented in this paper focuses on visualizing fMRI data 

obtained from brain activity studies and stored in the NIfTI file format. However, any 

functional medical data stored in the NIfTI format can be visualized and the general 

methods themselves can be applied to any type of functional medical data. 
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5.2.1 Magnetic Resonance Imaging 
Most medical imaging technology can obtain data from any direction or angle. MRI 

technology typically samples the body in an orthogonal grid starting at the head or feet 

and moving along the axis of the body. A depiction of this “scanning” process is shown in 

Figure 31. The scanner generates a series of 2D “slices” orthogonal to the axis of the 

body. This series of 2D slices can then be combined to create a single 3D block of data 

representing the entire scan of the patient. This 3D block of data is known as a volume 

representation. 

 

Figure 31: Volumetric data captured from CT and MRI machines. 

5.2.2 3D Volume Rendering 
The volume representation must then be visualized to enable medical 

professionals to gain insight about the patient. Volumetric data is different from the 

surface data traditionally used in computer graphics programming, such as computer 

games, because it does not contain any defined surfaces or edges. Therefore, surface 

rendering techniques are inadequate to use for visualizing volumetric data. Volumetric 

data requires a different type of graphics rendering technique, known as volume 

rendering, for proper visualization in 3D. Unlike surface rendering that represents an 

object as a series of vertices making up an outer shell to show the object’s shape, 

volume rendering sees an object as a three-dimensional lattice of vertices similar to a 

Rubik’s Cube. This allows volume rendering to visualize not only the shell of the data, 
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but the values inside the volume as well. Figure 32 shows the difference between 

surface rendering, in the left image, where only the faces of the data can be seen and 

volume rendering, in the right image, where the internal data can be viewed. 

 

  
Figure 32: Visualizing the surface data (left) versus volume rendering to 

see the internal data (right). 

 

Volume rendering can generally be broken down into four main techniques, 1) 

image splatting [13–16], 2) shear warp [18,19], 3) texture slicing [20,21], and 4) 

raycasting [22,23]. Of all these methods, raycasting produces the most accurate visual 

representation, but at a high computational cost. 

5.2.3 Volume Raycasting Pipeline 
Raycasting is a direct volume rendering technique that involves casting linear 

segments (i.e. “rays”) from each pixel in the frame buffer through the volume in the view 

direction [36]. Points along the path of the ray that intersect with the volume are sampled 

and composited together to generate the final pixel color. 

The volume rendering process begins with acquiring a volumetric dataset. The 

volumetric data is comprised of a set of samples, known as voxels, in three dimensions 
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(i.e. x, y, and z). Each voxel contains a measured value, v. In medical imaging, the voxel 

values typically represent tissue densities relative to a known substance such as air or 

water, and are one-dimensional values. In fMRI brain scans, the voxel value is a one-

dimensional value representing the blood oxygenation level-dependent (BOLD) signal 

change [28]. This is used because neural activity has been linked with local changes in 

brain oxygen content [46]. The change of oxygen levels over time also requires the 

addition of a time component, t, to the volume data sample, resulting in five values per 

voxel (x,y,z,t,v).  

The volume rendering pipeline defines the steps taken by the computer to 

translate volumetric data into a computer generated 3D representation. Rendering 

pipelines differ depending on the application or the type of data being used. The pipeline 

used in this research consists of Resampling, Classification, Coloring, and Compositing 

steps [11]. These four steps make up the core of the volume rendering pipeline. 

Additional steps for gradient computation and shading were not needed as medical 

imaging is typically not concerned with photorealistic rendering. Instead, medical 

imaging is concerned with providing contrast in the data to help identify physiological 

objects. Thus, the steps chosen for this research are common to many volume renderers 

available as open source or commercially. 

5.2.3.1 Resampling 
Resampling is the first step in the render pipeline. The goal of resampling is to 

measure the volume data, comprised of voxels, at different positions in three-

dimensional space. Each voxel is commonly represented as a cube in medical imaging 

where each vertex represents a value. When sampling the volume, it is rare that a ray 

can sample a voxel’s vertex directly. More commonly, the sampling point resides within 
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the voxel. Trilinear interpolation can be used to approximate the value given its position 

within a voxel. Trilinear interpolation was chosen for this research due to its reasonable 

visual quality and minimal computational requirements [27].  

The sampling techniques used in resampling are one of the primary differences 

between different volume renderers. For raycasting, an imaginary ray is cast into the 

volume from each screen pixel and samples are taken along the ray at evenly spaced 

intervals. Figure 33 shows a 2D representation of raycasting where the person’s eye is 

on the left looking at the computer screen represented by the black line, as rays are cast 

from each pixel into the gray volume. 

 

Figure 33: 2D example of raycasting. 

 

For speed considerations, it was important to first determine the bounds of the 

volume before casting the rays. This cuts down on the total number of samples taken by 

the ray and thus speeds up rendering. The bounds of the volume were found by sending 

imaginary rays, ri, from each pixel through the scene in the viewing direction. Each ray 

looks for the first intersection with the volume, the blue boundary fi, and the last 

intersection with the volume, the green boundary li. Rays that did not intersect with the 

volume were rendered the background image color.  
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Rays that intersect the volume take samples at specified intervals, shown by the 

dashed lines in Figure 33, where each dash would represent a single sample. The 

sampling interval can be changed to accommodate different implementation goals. The 

tradeoff is smaller sampling intervals result in higher quality images at the expense of 

more computations. The sampling interval used in this implementation was set to the 

width of a single voxel, after ad-hoc testing. This value can be changed in further 

implementations if desired. 

5.2.3.2 Classification 
Classification determines the subset of samples that make up the final image by 

mapping the sample’s intensity to an opacity value between zero and one. This range 

indicates how much of that voxel’s data should be included in the final image with zero 

being completely transparent and one being completely opaque. The mapping between 

voxel intensity and opacity is known as an opacity transfer function [50,54]. Creating an 

opacity transfer function can be very complex depending on the type of data being 

viewed. The opacity transfer function used in this implementation is a normal distribution 

with the high and low values equating to completely transparent and the median 

equating to completely opaque [55]. 

5.2.3.3 Coloring 
Coloring is used to map a sample’s intensity to a color using color transfer 

functions. The purpose of coloring is not always to provide photo realism, but to provide 

contrast within the data to help identify desired features. Coloring is challenging because 

volume data typically assigns a single value (intensity in medical imaging) to each voxel 

and not a traditional three-component color, like red, green, and blue. Therefore, 

coloring methods must intelligently convert a single value into three different values in a 
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way that makes desired structures more visible. This conversion is typically 

accomplished by using different color transfer functions (a.k.a color lookup tables [177]) 

for each color channel. Different organizations and institutions, such as the National 

Institute of Health (NIH), create their own color transfer functions for different types of 

data. This research used some of these institutional color transfer functions. 

5.2.3.4 Compositing 
Compositing is the final step in the rendering pipeline and is the process of taking 

all the values sampled by the ray and combining them into a single color to be used for 

that pixel. The front-to-back compositing method used Equation 1 to calculate the final 

intensity value, I(x,y), for each ray. The final intensity value is a sum of the sample point 

intensities, Ii, multiplied by all the transparencies (1-αj) encountered previously along the 

ray. Put another way, each voxel sample can be thought of as a pane of colored glass 

that has some opacity, α. If the first pane of glass is completely opaque, the following 

panes of glass cannot be seen. If the first pane of glass is 75% opaque, the second 

pane of glass can be seen but its color will only be 25% visible at best. Compositing 

works the same way, the higher the opacity of a sample, the less the following sample’s 

intensity can contribute to the final intensity value.  

 

𝐼 𝑥, 𝑦 = 𝐼3

4

356

1 − 𝛼8

39:

856

 
(

1) 

 
Each voxel sample’s intensity value is a combination of the color, Ci, from the color 

transfer functions and the opacity, αi, from the opacity transfer function. Equation 2 
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shows how these two values are multiplied together to compute the voxel sample’s 

color. The higher the opacity, the more intense the resulting color contribution is.  

𝐼3 = 𝐶3×𝛼3 
(

2) 

Front-to-back compositing is continuously evaluating the current voxel sample’s 

intensity and blending it with previous samples. This constant evaluation is what allows 

front-to-back compositing to achieve a performance benefit from early ray termination. 

When the cumulative opacity reaches 1.0, there is no need to continue compositing 

along the ray because the contributions of all subsequent samples would be zero. Thus 

the render loop can be exited for that ray with no impact to the final pixel color. 

5.2.3.5 Raycasting Optimizations 
Much research has been performed to handle the enormous computational 

resources required by raycasting and improve its speed. One of the most common 

methods is early ray termination (also known as adaptive termination) [91]. Early ray 

termination was originally proposed by Whitted [92] as an adaptively terminating 

raytracing algorithm. Levoy [93] took this idea and developed two front-to-back volume 

raycasting algorithms. The first was a case where the ray traversal should be terminated 

when an opaque voxel is reached. The second case terminates the ray traversal when 

the accumulated opacity reaches a user-specified level where additional samples will not 

dramatically change the final pixel color.  

Another significant challenge of raycasting is the limited texture memory available 

in commodity computers. Traditional 3D MRI datasets can be on the order of 512x512 

pixels per slice, which equates to 0.78 megabytes (MB) per slice if each pixel is 3 bytes 

(e.g., JPEG photos). It is common to have datasets on the order of 300 to 1000 slices, 
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resulting in 236 to 786 MB per dataset, respectively. It is common to store the slice data 

as a 32-bit per pixel texture for the graphics card, resulting in a required memory of 786 

MB to 1.05 gigabytes (GB). A dedicated graphics card is typically necessary to handle 

this amount of texture memory effectively and most commodity computers do not come 

with dedicated graphics cards. 

5.2.4 4D Volume Raycasting 
Moving from 3D to 4D to accommodate functional data presents its own sets of 

problems and limitations. All of the issues relevant to 3D volume rendering remain 

present in 4D rendering, but new ones get added to the list. In 3D volume rendering, 

there is one set of static volumetric data. Organs are caught in a single position and 

represented in that “frozen” state. In 4D rendering, there is volumetric data over time (i.e. 

per a defined time step). This causes the amount of data to increase linearly with the 

number of time steps taken. Using the previously discussed 3D dataset as an example, 

if the same 236 to 786 MB 3D volume was recorded for 100 time steps, the amount of 

memory increases to 23.6 to 78.6 GB. Thus, methods are required to handle the 

increase in data, along with other issues to be discussed later, to allow rendering at 

interactive speeds. The most common method for dealing with the increase in data when 

moving from 3D to 4D data involves decomposing the original data into two individual 

datasets. The first is a high-resolution scan holding all the structural data that does not 

change over time. For example, in an fMRI of the brain, this would equate to the 

structure of the brain itself. The second scan is a set of lower resolution scans capturing 

changes. In the previous example, this would be the brain activity.  

Dividing the fMRI data into two scans reduces the total amount of volumetric data 

that changes from one frame to the next, but introduces the challenge of rendering 
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multiple volumes at the same time. Some researchers approached this problem with the 

assumption that multiple volumes were correctly aligned in 3D space and never moved 

in relation to each other [137–139]. This assumption works well for data sets like fMRI 

brain activity where the functional and structural data never move independently of each 

other. Once the volumes are aligned in 3D space, the ray cast into the volume samples 

once from each volume at every sampling point along the ray. The process of scaling 

and aligning two volumes of different resolutions will be discussed in more depth in 

section Combining 3D and 4D data into one representation. 

Multiple volume rendering uses the same volume rendering pipeline described 

earlier, with the exception of sampling all volumes at each point in space during 

resampling. There are two different methods of combining those samples together. The 

first is One Property per Point (OPP), where a single volume’s sample is selected to be 

the final value at that point [139]. The ability to use only a single volume’s value was 

found to be useful when certain characteristics were more important than others (e.g., 

EEG brain activity would be more important to visualize than the skull).  

The second option is Multiple Properties per Point (MPP), where all samples are 

combined together to achieve a single value for that point [125,126]. The biggest 

difference in MPP is typically where in the volume rendering pipeline the samples are 

combined together. Data mixing can occur in the sampling, coloring, or image stages 

depending on the desired output [137]. Manssour, et al., proposed a method where two 

volume values were combined after the sample’s color was determined for each volume 

and combined using a weighting function [138]. Wilson, et al., experimented with three 

different methods of data mixing: 1) chose one volume’s value as the only value, 2) use 

a weighted function to combine all the values, or 3) use a single volume value each for 

the red, green, and blue color channels [131]. The advantage to MPP is the ability to mix 
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the samples from both volumes into the final color, versus the OPP method that must 

choose one volume per sample. This provides more control over the final sample color 

and allows more complex visualization strategies to be used. However, the visualizations 

can become too complex to decipher if too many volumes are mixed or if the data mixing 

is not done in a consistent and intuitive way.  

5.2.5 Mobile Raycasting 
Advances in computational and graphics processing speeds allow for real-time 

volume raycasting on desktop and immersive VR hardware platforms [164,178]. 

However, there has been a dramatic shift in the US and worldwide toward mobile 

devices in recent years [33]. There is a need to expand the reach of medical imaging 

visualization technologies toward supporting these types of devices as they become 

more common in the medical field. 

Volume raycasting for mobile devices has been a challenge due to the limited 

hardware computational power and a lack of support for 3D textures. Mobile devices are 

generally underpowered compared to desktop computers because they intentionally 

sacrifice computational power for size to keep devices thin and light and provide ample 

battery life. However, the largest limitation came from the lack of 3D texture support that 

required 3D volume data to be stored as a series of 2D textures. Storing volume data in 

2D textures required a greater number of graphics operations to map 3D voxel locations 

to a pixel in in set of 2D textures. Additionally, raycasting samples generally fall between 

voxels requiring some method of interpolation to obtain a correct value. Interpolating 3D 

positions within a set of 2D textures required a prohibitively large number of graphics 

operations. It was just not possible to perform all of these calculations quickly enough for 

real-time applications on a mobile device [2].  
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The computing power provided by mobile devices and specifically the graphics 

processing units (GPU) has changed in recent years with mobile GPU technology 

approaching the performance seen in some laptop computers. There has also been an 

increase in support for 3D textures that have proven critical for volume raycasting. New 

GPU languages like Metal [179] and Vulcan [180] reduce computational overhead while 

increasing draw rates over previous software libraries like OpenGL ES [181]. 

To date, there has not been a successful real-time volume raycasting 

implementation for mobile devices. Achieving real-time volume rendering has required 

using a less computationally expensive method, such as orthogonal texture slicing [163]. 

The only available application for visualizing fMRI data in 3D on a mobile device is 

NeuroPub [182], an application for Apple’s iOS platform. NeuroPub does not use volume 

raycasting and limits the functional data to only 32-bit NIfTI format with 64x64 pixel 

slices. The lack of available fMRI volume raycasting applications indicates the difficulty 

inherent in building a mobile raycaster that can handle generic fMRI data robustly with 

real-time interactivity for a user. 

The goal of the research presented in this paper was to explore the feasibility of 

real-time visualization of fMRI data on a mobile device using volume raycasting. The 

application was developed to support any 3D static anatomical and 4D fMRI brain 

activity data that can be generically stored in the NIfTI file format. 

5.3 Materials and Methods 
A prototype application was built for iOS tablets using the new Metal graphics 

programming language to test the feasibility of implementing a 3D and 4D volume 

raycasting method on a mobile device. The goal of the prototype was to develop an 

efficient raycasting algorithm that could be run on mobile devices and observe real-time 
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interaction when viewing both 3D static and 4D dynamic volumetric data. Currently, 

there is no standard for what frame rates qualify as real-time, so it is difficult to quantify 

whether an application is real-time or not. Miller identified 0.1 seconds as an acceptable 

graphical response time after input from a light pen [1]. Therefore, a framerate of 10 

frames per second or higher will be considered acceptable as real-time for this research. 

Volumetric data load times were also considered given they are critical to determining 

the usability of an application in everyday medical situations. Medical professionals are 

not likely to wait significant periods of time (e.g., 5-10 minutes for more) to load a single 

dataset in their everyday work flow. The following sections will describe the 

implementation of the raycasting algorithm used in this research, along with the 

challenges and contributions to the field. 

5.3.1 Raycasting with the iOS Metal Shading Language 
As mentioned in the Mobile Raycasting section, 3D volume raycasting on mobile 

devices has historically been a challenge due to the limited hardware computational 

power and a lack of support for 3D textures. Moving to 4D volume rendering of fMRI 

data increases the amount of data and the number of volumes required to be stored in 

textures. 

The Metal shading language was introduced for iOS devices with support for 3D 

textures and a focus on low level control of the graphics pipeline. Metal provides the 

capabilities to develop a more advanced volume rendering method for mobile devices 

than was previously possible. Implementing the volume raycasting algorithm using Metal 

required development and optimization of both the application initialization and the 

render loop for best performance. The initialization of the application required the setup 

of the Metal graphics pipeline. This includes steps such as initializing the vertex buffers, 
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textures, and compiling the shaders for use. Shaders are small programs that can be 

written to run on a GPU and is where the volume rendering logic is written. The render 

loop consisted of passing in the vertex buffers, textures, and uniforms to the shader to 

process. A shader uniform is simply a value passed into the shader from the application. 

In general, it is desirable to move as many operations as possible into the initialization 

step to allow faster drawing in the render loop step. However, doing so sometimes 

requires increasing the memory footprint on a limited device. The volume raycasting 

pipeline, as implemented using Metal, can be seen in Figure 35. The pipeline is broken 

up into the Application Compilation, Application Initialization, and Render Loop steps. 

The entire raycasting pipeline implementation using Metal will be discussed in more 

depth in the following sections. 

 

 
Figure 34: Volume raycasting pipeline implementation using Metal. 

5.3.1.1 Initializing the Volume Raycaster 
Optimization of the volume renderer began by moving as many operations out of 

the run loop as possible. For example, Metal provides the option of precompiling the 

shaders during application compilation. This is different from the previous standard, 

OpenGL ES, that required compiling the shader code on application launch or 



www.manaraa.com

103  

dynamically as the application ran. Moving the shader compilation into application 

compilation, improved both application launch speed and frame rates when changing 

between different shader programs during application runtime. Three different shader 

programs were written to render the 3D and 4D data. 

Traditionally, a shader accepts the volumetric data as an input in the form of a 

texture or a set of textures. In this research, each volume is passed into the shader as a 

3D texture. Each texel in the texture represents a single voxel’s intensity value. The 

high-resolution structural data is stored in a single 3D texture and the low-resolution 

functional data is stored in a series of 3D textures where each texture represents a 

single snapshot in time. 

Each shader program was included within a unique MTLRenderPipelineState, 

which is a Metal object that encapsulates the rendering configuration used during a 

graphics rendering pass. Three MTLRenderPipelineState objects were created upon 

initialization with the first for only 3D structural data, the second for only 4D functional 

data, and the third for a combination of the two. Creating individual 

MTLRenderPipelineState objects allowed the rendering process to be optimized for each 

type of data. MTLRenderPipelineState objects are expensive to create but efficient to 

swap, therefore it made sense to create the difference states at initialization and swap 

them as needed at run time.  

Loading data is another time consuming process that is best performed upon 

initialization. When loading the volume data, there were two options for storing it. The 

first was to store each volume as a 3D texture and the second was to store the volume 

as an array of values. The second method used less memory and was faster at 

initialization, but required converting the array of values for a volume into a 3D texture 

anytime that volume was to be rendered. Both of these methods were implemented and 
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tested to determine if the rendering speed gains were significant enough to overcome 

the increased memory footprint and increased application initialization time. 

Another operation that was moved from the render loop to initialization was the 

generation of opacity and color transfer functions. A 1D texture was used to store the 

opacity transfer function and a set of three 1D textures were used to store each color 

transfer function. Opacity transfer function textures are traditionally created/updated 

every time the desired range of voxel values to visualize changes, which is an expensive 

process. Instead, a single texture was created at initialization and a user defined 

minimum and maximum intensity value were passed to the shader through a uniform. 

Using the minimum and maximum intensity values, the shader can determine whether a 

voxel value falls within the range and then use the opacity transfer functions to 

determine an opacity, otherwise the opacity is zero. This method is more efficient than 

rebuilding the texture after every change. 

5.3.1.2 The Raycasting Render Loop 
Once the graphics pipeline is initialized, the rendering loop can begin drawing. The 

shader starts by determining the start and end points of the ray for the current pixel. It is 

important to calculate the start and end points of the ray to determine the number of 

times the ray must sample. The number of samples the ray takes is directly proportional 

to rendering time. The more samples the ray takes, the longer it takes to render a frame 

and the lower the frame rates. 

The shader then starts sampling at the start point and continues along the ray until 

it reaches the end point. The ray is sampling in 3D world space, but the volume data is 

defined as a 3D texture with its own coordinate system. Sampling the volume requires 

both the ray and the volume texture to be in the same coordinate space. In computer 
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graphics, the model-view matrix is used to map a 3D model, the volume, from its local 

coordinate system to a position and orientation relative to the camera, the screen. To 

map the ray’s world location relative to our 3D texture, the inverse of the model-view 

matrix was applied to the ray. 

The converted ray can then be used in the raycasting loop to step along the ray 

and sample the volume at different points. Each sample along the ray checks if the 

intensity value was within the minimum and maximum intensity value bounds defined by 

the user. Anything outside those bounds was set to zero. The intensity value can then be 

used to sample the opacity transfer function texture for the correct opacity. If the opacity 

is not greater than zero, the ray moves to the next sample. If the opacity is greater than 

zero, the intensity value is used to determine a color using the color transfer function 

texture. The opacity and color are then combined to form the sample’s contribution to the 

final pixel color. Equation 2 defines how the individual components are combined 

together to achieve a final pixel color. This sampling process continues until the end of 

the ray is reached or the pixel color becomes completely opaque. 

5.3.1.3 4D Volume Rendering with Metal 
Moving from 3D rendering to 4D rendering required creating a different shader to 

handle changing volume data. The interest in 4D data comes from the change in activity 

from the baseline at different moments in time. Therefore, it was necessary to create a 

fragment shader that accepted two 3D textures, one representing the baseline activity 

and the second representing the time step of interest. The 4D fragment shader samples 

both the baseline and the current time step textures. The two intensity values are 

differenced to visualize the current activity at that time step. 
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The amount of noise associated with the functional data necessitated an activity 

threshold to be implemented to only show changes in activity that reached a certain 

magnitude. The threshold value was set with a slider in the user interface and the value 

was passed into the shader as a uniform. The threshold method was chosen due to its 

simplicity and computational efficiency compared to other filtering methods.  

The functional data did not go through the same coloring process as the structural 

data. Instead, the color was determined by multiplying the color red by the magnitude of 

the activity. This results in higher levels of activity being displayed as more red in the 

final image. Any color could be used for this specific representation. 

5.3.1.4 Combining 3D and 4D Data into One Representation 
The third fragment shader program combined both the 3D structural data and the 

4D functional data into one representation. This required passing in one 3D texture for 

the structural volume, one for the functional baseline volume, and one for the functional 

current time step volume. The implemented method for combining multiple volumes was 

built on the assumption that none of the volumes move independent of each other. This 

assumption allowed the efficient casting of a single ray and sampling all three textures at 

the same location. While this assumption is a gross simplification of the general multi-

volume rendering problem, it is not incorrect with fMRI data, where the structural and 

functional volumes never move independently.  

The challenge with this multi-volume rendering method comes from mapping the 

sample point in 3D world space to a point on each texture in their own space. This 

becomes especially tricky when each volume contains textures with different resolutions 

and scalings. Figure 35 shows a 2D example of the mapping issue. The left-side of the 

figure shows the structural (blue) and the functional (red) textures that represent the 
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voxel data of their respective volumes. Both textures use a normalized coordinate 

system with (0,0) being the upper left corner and (1,1) being the lower right corner. Each 

box in the image represents a voxel. The right-side of the image shows the world space 

where both volumes are aligned and scaled with the functional volume being scaled up 

equally in both directions. The world space uses a coordinate system where the center 

of the volumes is at (0,0) and the height and width of the structural volume is 10. If the 

renderer samples the volume at world space location (0,0), the mapped texture position 

would be (0.5, 0.5) for both the structural and the functional texture. However, if the 

renderer samples the volumes at (5,-4), the sample falls outside the bounds of the 

functional volume but not the structural volume. Therefore, the structural texture is 

sampled at (1, 0.9) and the value for the functional volume is set to zero as it does not 

exist at that point. 

 

 
Figure 35: Mapping sampled points in 3D world space to 2D textures. 

 

Once both volumes are correctly sampled, the intensity values must be classified 

and colored. The structural volume’s intensity value went through the same opacity and 

coloring operations as previously described for 3D rendering. The functional data went 

through the same coloring process as described above for 4D rendering where the 
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activity level is directly proportional to the intensity of a single color, in this case red. The 

structural and functional color components were then added together to obtain a final 

color value for that sample. This process was then repeated for every sample along the 

ray. The result can be seen in Figure 36 where the structural data is colored using a blue 

coloring scheme and the functional data is represented in red. 

 

 
Figure 36: Combined structural and functional data for the brain. 

5.4 Results 
Evaluating the feasibility of this real-time volume raycasting implementation relied 

on measuring data initialization time, frame rates, and the memory footprint. The 

prototype raycasting application was tested on a 2016 9.7” iPad Pro running iOS 9.3.4. 

The iPad had a 64-bit Apple A9X dual core processor with 2 GB of built in memory to 

power a 2048 x 1536 pixel screen. 
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Two representative brain activity fMRI datasets were used for testing. Each 

dataset consisted of a high-resolution structural volume and a set of low-resolution 

functional volumes. For both datasets, the structural component was 256 by 256 pixels 

per slice with 128 slices. The functional component of Dataset 1 was 64 by 64 pixels per 

slice, with 24 slices per time step and 126 time steps total. The functional component of 

Dataset 2 was 80 by 80 pixels per slice, with 41 slices per time step and 114 time steps 

total. All fMRI data was stored in the NIfTI file format with 16 bits per voxel. The 

functional data was captured with a three second time interval for Dataset 1 and 2.5 

second time interval for Dataset 2. 

The prototype application was evaluated for data initialization times using these 

representative fMRI datasets. Data initialization included the setup of the rendering 

pipelines and creation of all necessary Metal objects. Table 3 shows the measured 

results of the data initialization time compared to the resulting memory footprint. The first 

condition looked at the implementation where only a single time step is converted into a 

3D texture upon initialization. The second condition stores all time steps as 3D textures. 

For each condition, the application was launched and data was loaded ten times to 

obtain an average. 

 

Table 3: fMRI data initialization times in seconds 
 Dataset 1 Dataset 2 
 Single functional 

texture 
All functional 

textures 
Single functional 

texture 
All functional 

textures 
Average (s)  16.4 29.8 18.1 47.8 

Standard  
Deviation 0.272 0.268 0.317 0.337 

Variance 0.074 0.072 0.101 0.113 
Memory (MB) 362 408 670 958 
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Frame rates were tested between the three different shader configurations for 

structural, functional, and combined data (both structural and functional). Within the 

functional and combined conditions, the framerates were measured as a single time step 

(Single time step) and as animating through time steps (All time steps). The All Time 

Steps condition was used to determine the performance impact when “playing” back the 

data as it would have been captured. The frame rates were also compared between the 

implementation where textures were created upon demand (Single Texture) and when 

they are initialized upon startup (Preload Textures). Each condition consisted of five runs 

measuring 100 consecutive frames each with no user interaction. The mobile device was 

rebooted between runs. Those frames were then averaged for the final frame rates. 

Table 4 shows the resulting frame rates for the different conditions. 

 
Table 4: Average frame rates in frames per second for a one voxel sampling step 

  Structural Functional Combined 
   Single 

time step 
All time 
steps 

Single 
time step 

All time 
steps 

Dataset 
1 

Single 
Texture 17.908 45.096 4.723 11.845 4.699 

Preload 
Textures 17.920 51.787 9.316 11.972 9.515 

Dataset 
2 

Single 
Texture 17.952 31.528 1.983 9.846 1.979 

Preload 
Textures 17.984 37.345 3.873 11.705 3.864 

 
The results shown in Table 4 were obtained with no user input, and therefore, the 

volume did not move. A second condition was tested, where the volume was rotated 

around the vertical axis, with one full rotation every 10 seconds. The results comparing 

the framerates while rotating the volume with the non-rotation condition can be seen in 

Table 5. The difference in the results was considered negligible, as it is less than 10% 

for the conditions tested. This indicates that user interaction does not have much, if any, 
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affect on the framerates, that the size of the dataset, etc. are more influential factors. 

This will be discussed more in the Discussion section to follow. Therefore, further results 

only used one condition (no user input) and the results were assumed to not have 

changed for the rotation condition. 

 
Table 5: Frame rates when rotating and not rotating the volume. 

  Structural Functional Combined 
   Single 

time step 
All time 
steps 

Single 
time step 

All time 
steps 

Dataset 
1 

No  
Rotation 17.920 51.787 9.316 11.972 9.515 

Rotation 18.866 47.854 9.704 11.016 8.217 

 
Framerates were again tested when the sampling step size of the raycasting 

algorithm was increased from the width of one voxel to the width of two voxels. 

Increasing the sampling step size will reduce the image quality and result in missing 

small anatomical features. However, the tradeoff between speed and image quality may 

be desirable in some situations. Table 6 shows the results of the frame rates when 

increasing the sampling step size to the width of two voxels for the preloaded texture 

condition. The change in image quality between the two sampling rates can be seen 

below in Figure 37. 

 
Table 6: Average frame rates in frames per second for a two voxel sampling step 

  
Structural Functional Combined 

  
 Single 

time step 

All time 

steps 

Single 

time step 

All time 

steps 
Dataset 

1 
Preload 
Textures 41.20 60.03 9.64 22.60 9.45 

Dataset 
2 

Preload 
Textures 41.04 60.02 3.81 21.55 3.87 

 



www.manaraa.com

112  

  
Figure 37: One voxel width sampling step size (left) versus two voxel width sampling 

step size (right). 

5.5 Discussion 
This research built a prototype volume raycasting application for 3D and 4D 

medical imaging to determine the feasibility of visualizing fMRI data on mobile devices. 

Feasibility was determined by data initialization times, frame rates, and memory 

consumption. It is impossible to compare this method with others, because there 

currently is no real-time volume raycaster that support 3D and 4D data. Therefore, the 

results of this research were compared, when possible, with a fMRI desktop 

implementation [183] similar to this work as well as a previous iPad volume renderer 

using orthogonal texture slicing instead of raycasting [163]. 

The data initialization times were 16.4 and 29.8 seconds with Dataset 1 and 18.1 

and 47.8 for Dataset 2 using two different implementations for storing the volume data. 

The difference in load times is a result of loading all the functional volume data into a set 

of 3D textures, which is computationally expensive. For comparison, the data loading 

time of the desktop application using the same fMRI data set was 8.55 seconds [183]. In 
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general, lower times indicate better usability in the real world. However, initialization 

happens once upon loading data and does not significantly impact the real-time nature 

of the application once loading is complete. Since the longest initialization time was only 

approximately 30 seconds, it is considered near real-time. 

Storing all volume data in 3D textures instead of generating those textures on 

demand increases the random access memory (RAM) footprint of the application from 

362 MB to 408 MB for Dataset 1 and from 670 MB to 958 MB for Dataset 2. This is not 

an insignificant increase in memory given many mobile devices are limited to one to two 

GB of memory and the operating system will shut down the application if it uses too 

much of the available memory. The desirability of this memory increase can only be 

considered when looking at the impact on frame rates. 

This research defined real-time interaction as being 10 frames per second [1].  The 

Single time step frame rates were between 11 and 51 frames per second for Dataset 1 

and between 9 and 37 frames per second for Dataset 2. The All time steps conditions 

were between 4.7 and 9.5 frames per second for Dataset 1 and between 1.9 and 3.8 

frames per second for Dataset 2. The Single time step conditions do consistently meet 

the 10 frames per second goal across both datasets. The All time steps condition was 

not able consistently meet the 10 fps, but Dataset 1 was close at 9 fps using the pre-

initialized textures. 

Comparing the frame rates when raycasting Dataset 1 on the desktop application 

saw the structural condition with 54.9 fps, functional Single time step with 60.93 fps, and 

functional All time steps with 60.22 fps [183]. The improved frame rates are expected 

with a 2.6GHz Intel Core i7 processor, 16 GB of RAM, and a NVIDIA GeForce GT 750M 

graphics card. The comparison iPad application used orthogonal texture slicing and a 

similar dataset of 256 x 256 pixels per slice and 128 slices and saw frame rates between 
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45-50 fps for the structural static condition [163]. The improved frame rates can largely 

be attributed to the use of a less computationally expensive orthogonal texture slicing 

algorithm, even running on an iPad 2. 

When increasing the sampling step size to twice the width of a single voxel, the 

frame rates increased as expected. The Single time steps conditions consistently saw 

double the frame rates. However, the All time steps condition saw no increase in 

framerates whatsoever. This would indicate that switching 3D textures representing the 

functional volumes is the bottleneck in the rendering process. This is not consistent with 

traditional views on 3D raycasting that identify the number of rays and the number of 

samples as the bottleneck. 

The image quality differences between the single voxel width sampling step size 

and the double voxel width step size is minimal. It is possible to observe a lighter 

coloring of the volume due half the number of samples being composited into a final 

color. It is not recommended to use the double step size for most medical visualization 

application, as small anatomical objects could be missed. However, for a general 

viewing, the tradeoff between speed and visual quality may be acceptable. 

One previous attempt at volume raycasting on a mobile device did attempt to use 

an iPad 2 to render a volume consisting of 64 slices at 512 x 512 resolution. The 

implementation used 2D textures as 3D textures were unavailable, and achieved frame 

rates under 1 frame per second. This would roughly equate to the structural condition in 

this research that saw 17 frames per second. This jump in frame rates occurred in a 5-

year time span and would indicate higher frame rates are not far way with the rate that 

computing power is increasing in mobile devices. 

The tradeoff between memory footprint and frame rates can be seen in the result 

of a 46 MB increase for Dataset 1 and a 288 MB increase for Dataset 2 resulting in 
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double the frames for the All time steps conditions. While memory is at a premium on 

mobile devices, the doubling of frame rates appears to outweigh the memory increase. 

Therefore, it is recommended to store all volume data as 3D textures when 4D functional 

data is used. 

5.6 Conclusions 
This research looked at the feasibility of implementing a real-time 3D and 4D fMRI 

volume rendering method on a mobile device given the recent updates in graphic 

computational performance and new graphics languages. The application initialization, 

frame rates, and memory footprint results indicate that it is feasible to implement a 

raycasting method on a mobile device, but the frame rates are still not consistently high 

enough to be considered real-time. This is especially true for the 4D functional data 

which saw low frame rates. However, the performance will improve as hardware 

continues to improve. 

Improvements in frame rates can be gained by implementing other performance 

techniques like empty space skipping through the use of octree data structures. Another 

possible improvement for brain activity visualization would be to calculate the difference 

in activity between the baseline and the current time step upon initialization and store the 

difference in a 3D texture. This would take more time for data initialization, but would 

reduce the number of textures passed into the fragment shader as well as remove the 

fragment operations currently used to perform this at run time. This method would also 

allow more sophisticated filtering of the noisy functional data. 
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6.1 Abstract 
Medical imaging technology has begun embracing the power of 4D functional MRI 

(fMRI) to diagnose physiological changes over time. Currently, fMRI is heavily used to 

study brain activity. The tools available for 3D fMRI visualization are currently limited 

with the majority restricted to desktop machines. With the rapid adoption of mobile and 

virtual reality devices in the commercial space, the move to the medical industry is not 

far off. It is therefore important to investigate the feasibility of performing 4D volume 

rendering on these types of devices. The increase in the amount of data from 3D to 4D 

fMRI is one challenge. It is also necessary to employ multi-volume rendering to visualize 

both anatomical and functional data. This paper describes research to explore the 

challenges of building a real-time 4D volume raycaster for desktop, virtual reality, and 

mobile platforms. Three prototype applications were built for a laptop, iPad, and a six-

sided CAVE (immersive VR) system. The desktop application was used as a baseline 

comparison of the other two modes. The results show that VR and mobile frame rates 

still lag behind the desktop application, but they do achieve frame rates between 10 and 

20 frames per second.   



www.manaraa.com

117  

6.2 Introduction 
Technology use in the medical field has greatly expanded in the last twenty years. 

The use of advanced medical imaging techniques has provided unparalleled non-

invasive examination methods. The advances in laptops and mobile devices allow 

medical professionals to expand their use of computers in their everyday workflows. The 

next frontier of medical devices looks to be virtual reality (VR) and augmented reality 

(AR), where these technologies are being used to improve learning [184]. Similarly, 

medical imaging technology has expanded beyond traditional static 2D grayscale 

images to 3D and 4D functional imaging that show how organs function and move over 

time. Functional medical imaging has impacted many areas of science, clinical practice, 

cognitive neuroscience, mental illness, and society [30]. Functional magnetic resonance 

imaging (fMRI) is the most commonly used form of functional imaging. It’s prominent use 

is in studying brain activity [28].  

The increased use of functional imaging technology requires visualization tools 

that allow researchers and medical professionals to harness the power of fMRI on 

emerging hardware platforms like mobile and VR. This research looks at the challenges 

of visualizing fMRI brain activity data across the dissimilar computational platforms of 

desktop, mobile, and immersive virtual reality. One of those challenges involves the 

various different formats that functional data can be stored and read. There are multiple 

different file types, such as DICOM [185] and NIfTI [31], and different data compression 

techniques, such as JPEG, that can be used. This research will focus on using generic 

fMRI brain activity stored in the NIfTI file format for sample data. However, the volume 

rendering techniques described, can be applied to any type of functional medical data. 
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6.2.1 Magnetic Resonance Imaging 
Magnetic resonance imaging (MRI) technology can obtain data from any direction 

or angle, but typically samples the body in an orthogonal grid starting with cross-

sectional slices along the long axis of the body (i.e. head to feet). The scanning process 

generates a series of 2D “slices” orthogonal to the axis of the body as seen in Figure 38. 

The set of 2D slices can be combined to create a single 3D block of data representing 

the entire scan of the patient. This 3D block of data is referred to as volumetric data. 

A volumetric dataset is comprised of a set of samples, known as voxels, in three 

dimensions (i.e. x, y, and z). Each voxel contains a measured value, v. The voxel values 

typically represent tissue densities relative to a known substance such as air or water in 

medical imaging. Neural activity has been linked with local changes in brain oxygen 

content [46]. Therefore, brain scans look for changes in the blood oxygenation level-

dependent (BOLD) [28] within areas of the brain. The change in BOLD is stored as a 

one-dimensional value, v, in the voxel. Measuring the change of oxygen levels over time 

requires the addition of a time component, t, to the volume data sample, resulting in five 

values per voxel (x,y,z,t,v). 

 

Figure 38: Capturing volumetric data from CT and MRI machines. 
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6.2.2 3D Volume Rendering 
The volumetric data must then be visualized for medical professionals to gain any 

insight. Traditional computer graphics programming (e.g., computer games) use surface 

rendering methods that rely on a set of vertices to define the outside surface of objects. 

Volumetric data is different from surface data because it does not contain any defined 

surfaces or edges. Volumetric data requires volume rendering, a different type of 

graphics rendering technique, for proper visualization in 3D. Volume rendering sees an 

object as a three-dimensional lattice of vertices similar to a Rubik’s Cube. With a volume 

containing data inside the object, it is important that volume rendering is capable of 

visualizing not only the shell of the data, but the inside values as well. Figure 32 shows 

an example of the difference between surface rendering, in the left image, where only 

the faces of the data can be seen and volume rendering, in the right image, where the 

internal data can be viewed. 

 

  
Figure 39: Visualizing the surface data (left) versus volume rendering to 

see the internal data (right). 
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There are four main volume rendering techniques, 1) image splatting [13–16], 2) 

shear warp [18,19], 3) texture slicing [20,21], and 4) raycasting [22,23]. Each volume 

rendering technique implements its own rendering pipeline, which defines the steps 

taken by the computer to translate the volume into a 3D representation. The application 

type and volume data being visualized determine the best technique to use. Of all these 

methods, raycasting produces the most accurate visual representation, but at a high 

computational cost. Raycasting is a direct volume rendering technique that involves 

casting linear segments (i.e. “rays”) from each pixel in the frame buffer through the 

volume in the view direction [14]. Points along the path of the ray that intersect with the 

volume are sampled and composited together to generate the final pixel color. 

6.2.3 Volume Raycasting Pipeline 
The volume raycasting pipeline used in this research consists of four steps,  1) 

Resampling, 2) Classification, 3) Coloring, and 4) Compositing [11]. These four steps 

make up the core of the volume rendering pipeline. Additional steps can be added to the 

pipeline to improve photorealism, such as gradient computation and shading. However, 

medical imaging is typically more concerned with providing contrast in the data to help 

identify physiological objects than photorealism. Thus, the steps chosen for this research 

are typical of basic volume renderers currently available. 

6.2.3.1 Resampling 
Resampling measures the voxel values at different points in three-dimensional 

space within the volume. For raycasting, an imaginary ray is cast into the volume from 

each screen pixel and samples are taken along the ray at evenly spaced intervals. 

Figure 33 shows a 2D representation of raycasting where the person’s eye is on the left 
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looking at the computer screen represented by the black line, as rays are cast from each 

pixel into the gray volume. 

 

Figure 40: 2D example of raycasting. 

 

Determining the bounds of the volume before casting the rays cuts down on the 

total number of samples taken by the ray and thus speeds up rendering. The bounds of 

the volume were found by sending imaginary rays, ri, from each pixel through the scene 

in the viewing direction. Each ray’s first intersection with the volume represents the 

starting point, the blue boundary fi, and the last intersection with the volume represents 

the end point, the green boundary li. Rays that do not intersect with the volume can be 

ignored in the rendering process and set to the background image color.  

The resampling process starts the ray sampling at the starting point, fi, and 

continues at specified intervals until reaching the end point, li. The sampling points are 

represented as a single dash of the dashed line in Figure 33. The sampling interval used 

in raycasting can be increased or decreased based on the implementation’s goals. 

Decreasing the sampling size results in higher quality images, but lower rendering 

speeds. Sampling intervals greater than the width of a single voxel are not 

recommended due to the tendency to miss smaller anatomical features. Two sampling 
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intervals were tested in this research. The first was set to the width of a single voxel and 

the second was twice the width of a voxel. These values were chosen to test rendering 

performance based on sample size. 

During raycasting, it is rare for the sampling points along the ray to fall directly on a 

voxel’s vertex. More commonly, the sampling point falls within the voxel. Therefore, 

interpolation methods must be used to determine the appropriate value at that point in 

3D space. Trilinear interpolation was chosen for this research due to its reasonable 

visual quality and minimal computational requirements [27].  

6.2.3.2 Classification 
Classification takes each sample from resampling and determines whether it 

should be included in the final image. It does this by mapping the sample’s value to an 

opacity between zero and one. The opacity determines how much of that voxel’s data 

will be included in the final image with zero being completely transparent and one being 

completely opaque. The mapping between the sample’s value and the opacity is known 

as an opacity transfer function [50,54]. Creating an opacity transfer function can be very 

complex depending on the type of data being viewed. The opacity transfer function used 

in this implementation is a normal distribution with the high and low values equating to 

completely transparent, zero, and the median equating to completely opaque, one [55]. 

6.2.3.3 Coloring 
Coloring takes each sample and applies a color based on its value using transfer 

functions. The purpose of coloring is providing contrast within the data to help identify 

features. Creating coloring schemes that effectively provide contrast is a challenge with 

traditional data visualization. This challenge is even more difficult with medical imaging 

because each voxel has a single value that must be translated into a multi-component 
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color, such as red, green, and blue. The mapping of a single value to a color component 

is typically accomplished by using different 1D color transfer functions (i.e. color lookup 

tables [177]) for each color component. Different organizations and institutions, such as 

the National Institute of Health (NIH), create their own color transfer functions for 

different types of data. This research used some of these institutional color transfer 

functions. 

6.2.3.4 Compositing 
Compositing takes all the values sampled by the ray and combines them into a 

single color to be used for that pixel. The most common compositing method for 

raycasting is front-to-back compositing as described in Equation 1, where the final 

intensity value, I(x,y), for each ray is a sum of the sample point intensities, Ii, multiplied 

by all the transparencies (1-αj) encountered along the ray.  

 

𝐼 𝑥, 𝑦 = 𝐼3

4

356

1 − 𝛼8

39:

856

 
(

1) 

 

Each sample’s intensity, Ii, is a combination of an opacity, αi, and a color, Ci, as 

shown in Equation 2. The color and opacity values are obtained from the Classification 

and Coloring steps through the transfer functions. The higher the opacity, the more 

intense the color contribution is to the final pixel color, I(x,y). 

𝐼3 = 𝐶3×𝛼3 
(

2) 

Put another way, each sample, Ii, can be thought of as a pane of glass with an 

opacity, αi, and a color, Ci. The higher the opacity of the first pane of glass, the less of 

the subsequent panes can be seen. A completely opaque first pane of glass would 
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prevent any other panes from being seen. A 75% opaque first pane would allow only 

25% of the color of the second pane of glass to be seen. Front-to-back compositing 

works the same way, where the opacity of the first samples impacting how much the 

color from the subsequent samples can be seen. Similarly, once the cumulative opacity 

reaches 1.0, there is no need to continue compositing because any additional samples 

would not affect the final pixel color. This method is referred to as early ray termination 

and is unique to front-to-back compositing. 

6.2.3.5 Raycasting Optimizations 
The large computational overhead associated with volume raycasting has created 

many different areas of research aimed at optimizing rendering speeds. One of the most 

common methods was described in the previous section, early ray termination (also 

known as adaptive termination) [91]. This concept was originally proposed by Whitted 

[92] as an adaptively terminating raytracing algorithm. Levoy [93] further developed this 

concept by terminating the ray traversal when the accumulated opacity reaches a user-

specified level. Levoy’s method is what was implemented in this research.  

Limited graphics memory is another significant challenge with raycasting. 

Traditional 3D MRI datasets can be on the order of 512x512 pixels per slice with 250 to 

1000 slices. Storing a single 512 x 512 slice of data using a 3 byte per pixel storage 

scheme (e.g., JPEG) equates to 0.78 megabytes (MB) per slice. This results in datasets 

between 195 to 786 MB per dataset on disk. When volume raycasting, it is common to 

store the volume as a 32-bit per pixel 3D texture for the graphics card, resulting in a 

required texture memory of 262 MB to 1.05 gigabytes (GB). A dedicated graphics card is 

typically necessary to handle this amount of texture memory effectively. 
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6.2.4 4D Volume Raycasting 
Moving from 3D to 4D volume raycasting to accommodate functional data presents 

its own sets of problems and limitations. 3D volume rendering deals with a single set of 

static volumetric data. Anatomical features are caught in a single position and 

represented in that “frozen” state. 4D rendering looks are volumetric data over time (i.e. 

per a defined time step). Therefore, the amount of data associated with a 4D volume 

increases linearly with the number of time steps. Using the previously discussed 3D 

dataset as an example, the same 195 to 786 MB volume recorded for 100 time steps 

would increase the total memory to 19.5 to 78.6 GB. Thus, methods are required to 

handle this increase in data to allow rendering at interactive speeds. Decomposing the 

original dataset into two individual datasets is the most common method for dealing with 

the increase in data. The first dataset is a high-resolution scan containing all the 

structural data that does not change over time. Using an fMRI of the brain as an 

example, this would equate to the structure of the skull and brain tissue. The second 

dataset is a set of lower resolution scans capturing changes. In the fMRI example, this 

would be the brain activity as represented by BOLD.  

Dividing the fMRI data into two datasets reduces the amount of volumetric data 

changing each frame, but requires rendering both the structural and functional volumes 

at the same time. Multi-volume rendering is required whenever there are two or more 

volumes in the scene at the same time. The general multi-volume rendering problem 

allows volumes to move around independently of each other, causing issues with depth 

sorting of data. When looking at fMRI brain activity data, the general multi-volume 

rendering problem can be simplified with the assumption that the volumes never move 

independently. The brain activity volume should always be correctly aligned with the 

structural volume of the brain. Researchers have used this assumption to create 
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innovative methods of multi-volume rendering that work well for this type of fMRI data 

[137–139]. With the volumes properly aligned in 3D space, the ray can sample once 

from each volume at every sampling point along the ray. 

There are two different methods of combining the samples from both volumes 

together. The first is One Property per Point (OPP), where a single volume’s sample is 

selected to be the final value at that sample point [139]. This method is useful when 

certain characteristics are more important than others (e.g., EEG brain activity would be 

more important to visualize than the skull).  

The second method is Multiple Properties per Point (MPP), where samples from 

each volume are combined together into a single value for that point [125,126]. MPP can 

be used to mix volume samples at various points in the rendering pipeline. Data mixing 

can occur in the resampling, coloring, or image stages depending on the desired output 

[137]. Manssour, et al., proposed a method of combining the volumes using a weighting 

function after the sample’s color was determined [138]. Wilson, et al., experimented with 

mixing data in three different ways: 1) chose one volume’s value as the only value, 2) 

use a weighted function to combine all the values, or 3) use a single volume value each 

for the red, green, and blue color channels [131]. MPP provides greater flexibility and 

can handle more complex visualization strategies than OPP allows. However, the more 

complex visualization strategies can become too complex to decipher if too many 

volumes are mixed or if the data mixing is not done in a consistent and intuitive way. 

6.2.5 Functional Imaging Tools 
While there have been some 3D volume rendering tools available for a while, the 

move to 4D has been slower. There are only a handful of 4D volume rendering tools on 

the market and many are proprietary, expensive, and do not support raycasting. 
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Siemens’ Syngo [186] and Amira [187] are popular commercial volume rendering tools 

for medical data. Syngo is a Windows tool specifically designed to visualize 4D fMRI 

data. Amira is designed for visualizing 3D and 4D micro-CT, PET, and Ultrasound data. 

Amira is one of the few tools that claims support for virtual reality CAVE systems and 

stereo rendering. However, both of these features are not easily enabled out of the box 

according to documentation.  

There are three free and open source 4D volume rendering tools available, 

including OsiriX [188,189], MeVisLab [190], and Vaa3D [166,167]. OsiriX is a FDA 

approved volume renderer that supports MacOS and iOS platforms. OsiriX does not 

support NIfTI data, which is more common for fMRI than the DICOM standard, and the 

mobile platform does not support 4D rendering or volume raycasting. MeVisLab provides 

cross-platform support for Windows, MacOS, and Linux desktop PCs, and supports 4D 

MRI visualization of fluid flow, but lacks support for fMRI data [165]. Vaa3D is a cross-

platform volume renderer that uses iso-surface rendering to visualize 3D and 4D volume 

data [166,167]. None of the open source tools currently provide any support for virtual 

reality systems or stereoscopic visualization. 

There currently exists only one mobile application on the iOS App Store that allows 

volume rendering of 4D fMRI data, NeuroPub [182]. However, this implementation is 

extremely limited with specific data requirements such as requiring 64 x 64 pixel slices at 

32-bits each. The visualization method appears to use (since source code or a detailed 

code description are not publicly available) a single surface model of the brain and map 

the functional data onto this model, meaning the tool does not use raycasting or the 

actual structural data of the patient in the visualization. 

The lack of tools available across desktop, virtual reality, and mobile devices 

indicates there are challenges associated with building 4D real-time volume raycasting 
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tools. This is extremely evident in mobile where there are currently no tools that use 

raycasting for 3D data, much less 4D. Previous research has shown 3D monoscopic (3D 

without glasses) and 3D stereoscopic (3D requiring glasses) displays to increase users’ 

understanding of shapes [191,192]. This was proven beneficial in mammogram lesion 

detection where new lesions were detected with stereo mammograms that were not 

detected in traditional film [193]. Increasing the tools available to medical professionals 

that allow the 3D monoscopic and 3D stereoscopic viewing of medical data will benefit 

medical diagnosis and treatment. Therefore, this research will look at the feasibility and 

challenges of building a real-time 4D volume raycaster for desktop, virtual reality, and 

mobile platforms. 

6.3 Materials and Methods 
Determining the feasibility of implementing a real-time 4D volume raycaster across 

desktop, virtual reality, and mobile platforms has many challenges. Differences in 

libraries, coding languages, and hardware across these platforms make it difficult to 

develop a single codebase that will work well for everything. From a developer 

standpoint, it was important to develop the volume renderer to use the same function 

calls across all three platforms. This provides consistency from the user perspective, and 

allows the developer to make the same function calls on every platform, even if the 

volume renderer is performing different actions within these function calls. It was 

important to implement the same raycasting pipeline across all three platforms to provide 

the same visuals and for evaluation. The coding languages and libraries used to build all 

three prototype applications will be discussed in the following sections, starting with the 

desktop and virtual reality prototypes. 
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6.3.1 Desktop and Virtual Reality Prototypes 
The desktop and virtual reality applications were built using C++ as the base 

coding language and the basis for all libraries. C++ was chosen due to its wide adoption 

in building software libraries and it’s support across most platforms.  

The low level graphics rendering Application Programming Interface (API) is one of 

the most important decisions for achieving computational efficiency. On desktop 

computers, the low level rending API choice is typically between DirectX and OpenGL. 

Both OpenGL and DirectX are generally considered comparable in their performance. 

However, DirectX is limited to Windows, while OpenGL is cross-platform, supporting 

Windows, Mac, and Linux. OpenGL was chosen because it provided a common graphics 

language across both desktop and virtual reality platforms and introduced no loss in 

performance on Windows hardware. 

The low level nature of OpenGL provides developers with many customization 

options for harnessing every scrap of computational power from the graphic processing 

unit (GPU). The downside to using OpenGL is that a code optimized for one GPU will 

not be optimized for a different GPU and may not work at all without changes. It was 

therefore decided to abstract the complexity of using OpenGL by encapsulating it within 

another API, OpenSceneGraph. This encapsulation allows the same coding routines to 

be called across different devices with OpenSceneGraph handling the correct OpenGL 

calls to achieve optimal results. 

Loading the volumetric data generically was a significant challenge. There are 

multiple possible file types used to store 4D volumetric data, such as DICOM, 

Analyze/SPM, MINC, AFNI, and NIfTI [31]. Formats like DICOM were designed for 

storing 3D data, thus when DICOM is used to store 4D volumetric data, there is no 

standard way of reading it. For fMRI brain scans, NIfTI is the most commonly used file 
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format. NIfTI is a superior choice for storing functional data as it was specifically 

designed for that purpose. However, not everyone uses the standard in a consistent 

way, so there are specific challenges with generically inputting data prior to visualization. 

Unlike more established formats, like DICOM, there are currently no open source 

software libraries available to read NIfTI data. Therefore, this research created a basic 

NIfTI file reader library capable of loading generic fMRI NIfTI files for volume rendering. 

The library was built using C++ and the C++ Standard Libraries to be both lightweight 

and cross-platform.  

The NIFTI file reader library was set up with a singleton called NIfTILoader as the 

main class and the starting point for developer interaction. The developer can pass in a 

list of NIfTI files to NIfTILoader and it will return a list of abstract Volume objects. The 

NIfTILoader class delegates file processing to the correct classes based on the version 

number of the NIfTI file. The abstract Volume class is designed as a container for all the 

information about the NIfTI data including relevant patient information, file header data, 

and the volume slice data. By default, a Volume object is returned with the volume slice 

data stored as a C-array. However, the Volume class was designed to be extended to 

support different types of graphics programming objects. For this research, the Volume 

class was sub-classed to create an OSGVolume and MTLVolume to store the volume 

slice data as a set of OpenSceneGraph images and Metal 3D Textures respectively. 

The desktop and immersive VR prototypes required using different windowing 

systems. The desktop prototype used Qt [194] for a windowing system and user 

interface. Qt is a freely available cross-platform software development kit. 

OpenSceneGraph’s window independence allows it to be rendered directly within an 

OpenGL widget provided by Qt and displayed within a user interface. 
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The immersive virtual reality prototype required a windowing system that would 

work on large scale rendering clusters like those seen in CAVEÔ platforms. VR Juggler 

was selected as the VR windowing system because it is open source and has been 

proven to have superior frame rates when compared to other similar systems [176].  

6.3.2 Mobile Prototype 
The choice with mobile development is currently between the iOS and Android 

platforms. There are other mobile operating systems out there, but these two make up 

the majority of mobile devices. Both systems have their advantages, but iOS was 

chosen over Android because of their new low level graphics language, Metal, that 

replaced the previous standard, OpenGL ES.  

Metal is a C based shading language that has shown a lower overhead than 

OpenGL ES that results in, according to Apple documentation, up to 10 times higher 

frame rates. Given that volumetric raycasting is a computationally expensive process, 

any additional performance increase is helpful. Metal achieves this by moving as many 

operations as possible outside of the render loop. One example is the focus on 

precompiling shaders during application compilation and then swapping them when 

needed during run-time. This is in stark contrast to OpenGL ES that compiles the 

shaders from source during run-time. Metal was also introduced with support for the 3D 

textures that are critical to efficient volumetric raycasting. 

Cross-platform libraries such as Qt and game engines like Unity3D were 

considered for this research because of their support for both iOS and Android. Native 

libraries are generally better optimized for the specific platform and therefore more 

computationally efficient. Thus, the decision was made to use as many native tools for 
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the prototype as possible including using Swift 3.0 programming language and Cocoa 

Touch for the windowing system and user interface elements.  

6.3.3 4D Volume Raycasting 
The volume raycasting pipeline described earlier needed to be modified to expand 

the functionality from 3D to 4D volume data. The fMRI brain activity data that was the 

focus of this research was broken into a high-resolution structural volume and a series of 

low-resolution functional volumes. Therefore, it was necessary to both expand the 

raycaster to visualize brain activity over time and to visualize multiple volumes at the 

same time. 

The brain activity in fMRI data is correlated with the increase in oxygenation in 

areas of the brain. This change in oxygen levels over time is what is stored in the 

functional volume. There is typically a baseline brain activity scan and then a series of 

brain activity scans over time. Visualizing the brain activity at a single time step required 

calculating the difference between the baseline brain activity and the current time step’s 

brain activity. From a programmatic stand point, this required storing both the baseline 

volume and the current time step volume as a 3D texture. The difference between the 

two volumes was defined as the activity at that time step.  

There is noise associated with fMRI brain activity data that can make it challenging 

to determining where brain activity is occurring. The amount of noise associated with the 

functional data necessitated the use of a brain activity threshold. The brain activity 

threshold worked similar to the classification stage in the rendering pipeline. The activity 

needed to exceed the threshold before being included in the final visualization. If the 

magnitude of the activity was below the threshold, the opacity for that sample was set to 
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zero so it would not contribute to the final pixel color. The activity threshold was a user 

specified value that could be changed interactively through a user interface slider bar. 

Obtaining a single cohesive visualization required rendering the structural and 

functional volumes together. The multi-volume rendering method used assumes that 

neither volume moves independently of each other. This assumption allows the efficient 

casting of a single ray and sampling of all three volumes (structural, baseline functional, 

and current time step functional) at the same location in 3D space. Using this method 

requires the volumes to be properly aligned and scaled relative to each other at the 

beginning of the process, as both the structural and functional volumes will have 

different scaling factors. 

The resampling process used a single ray to sample all volumes at the same 

location in 3D space to obtain a sample for each volume. Each sample went through its 

own classification and coloring steps before being combined with the other volumes’ 

samples to achieve a single color and opacity for that sample point in 3D space.  

The classification and coloring steps differed between samples from the structural 

or functional volumes. The structural samples went through the same process as if it 

were a single 3D volume to achieve a color and opacity. The functional samples 

calculate the difference between the current time step activity and the baseline activity. 

The difference in these two values represents the magnitude of the brain activity at that 

point. An opaque red color is multiplied by this magnitude to obtain a final color and 

opacity for that sample. This results in higher levels of activity being displayed as more 

red in the final image. 

The resulting prototype applications can be seen in Figure 41. The top image is 

the mobile application, the middle image is the desktop application, and the bottom 

image is the immersive VR application running the C6. 
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Figure 41: Prototype applications. From top to bottom, Mobile, Desktop, 

Immersive VR. 
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6.4 Results 
The goal of this research was to investigate the feasibility of real-time volumetric 

raycasting of 3D and 4D fMRI data. Unfortunately, there is no industry wide standard for 

what qualifies an application as real-time, making it difficult to quantify whether an 

application is real-time or not. However, previous research performed by Miller identified 

0.1 seconds as an acceptable graphical response time after an input from a light pen [1]. 

Using this value, a frame rate of 10 frames per second (fps) or higher will be considered 

acceptable as real-time for this research. Application initialization time, including 

volumetric data loading, was also used as a measure of the usability of the application in 

everyday medical situations. Medical professionals are not likely to wait extended 

periods of time (e.g., 5-10 minutes or more) to load a single fMRI dataset in their 

everyday work flow. 

The volume raycast prototypes were tested on three different hardware platforms. 

The desktop version was evaluated on a 2013 MacBook Pro running OS X 10.12 with a 

2.6 GHz Intel Core i7 processor, 16 GB of RAM, and a NVIDIA GeForce GT 750M 

graphics card. The desktop’s performance was used as a baseline to compare the 

immersive VR and mobile prototypes. 

The immersive VR prototype was evaluated using the C6, the world’s highest 

resolution six-side VR CAVEÔ located at Iowa State University. Twenty-four Sony 4K 

projectors achieve 96 million pixels per eye. A 96 node rendering cluster comprised of 

NVIDIA Quadro 6000 graphics cards is required to feed the 24 projects. The C6 uses the 

Red Hat Enterprise Linux operating system. An Intersense ultrasonic tracking system is 

used to track objects like the user’s head position. The 96 graphic node cluster provides 

an excellent testbed for the scalability of the implementation. 
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The mobile prototype was evaluated on a 2016 9.7” iPad Pro running iOS 9.3.4. 

The iPad had a 64-bit Apple A9X dual core processor with 2 GB of built in memory to 

power a 2048 x 1536 pixel screen. This hardware was the most powerful iOS device 

available at the time. 

A single representative brain activity fMRI data set was used for testing all three 

platforms. The dataset consisted of a high-resolution structural volume and a set of low-

resolution functional volumes, with each volume representing a different moment in time. 

The structural volume was comprised of 128 slices at 256 x 256 pixels per slice. The 

functional data included 126 individual time step volumes with each volume comprised of 

24 slices at 64 x 64 pixels per slice. There was a 3 second time interval between 

individual time steps.  

The application initialization time was measured to determine if the wait time for a 

user would be prohibitively long in a real world situation. The initialization timings include 

reading the NIfTI files, converting the volumetric data into 3D textures, and setting up the 

graphics pipeline. Table 7 shows the average application initialization time based on ten 

trials per platform. 

 
Table 7: Application Initialization Times in Seconds 
 Desktop Mobile VR 

Average 6.90 29.79 17.94 
Standard Deviation 0.062 0.268 1.740 

Variance 0.004 0.072 3.027 

 
 

The desktop prototype had the lowest application initialization at an average of 6.9 

seconds. The immersive VR application saw more than double the initialization time 

using almost identical libraries and code at 17.9 seconds. The timing points in all three 
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prototypes were chosen to eliminate measuring any user interface setup time, to keep 

the comparisons as close as possible. The raw computing power of the VR hardware 

surpasses that of the desktop hardware, therefore the time difference can be attributed 

to the synchronization of data across the computer cluster. The mobile platform, as 

expected, proved the slowest of the three platforms clocking in at over four times that of 

the desktop at almost 30 seconds. While there are differences in the software stack 

being used, the large difference is most likely due to the difference in raw computational 

power. 

The frame rates of the prototype applications were evaluated with the 10 frames 

per second goal for real-time interaction. The prototypes were tested visualizing only the 

structural data, only the functional data, or both (combined). The functional data could 

also be visualized statically (Single time step), or by animating through the time steps 

(All time steps). This resulted in five different testing conditions for the different 

platforms. The VR platform was tested with the volume raycaster running on all 96 

nodes of the CAVEÔ  system as well as running on a single standalone node. Each 

condition consisted of five runs measuring 100 consecutive frames. These conditions 

were then ran while simulating no user interaction (No Rotation) and while simulating a 

user rotating the volume around the vertical axis once every 10 seconds (Rotating). All 

devices were rebooted between runs. Those frames were then averaged for the final 

frame rates shown in Table 8. 

 

 

 

 



www.manaraa.com

138  

Table 8: Frame Rates for Desktop, VR, and Mobile. 
  Structural Functional  Combined  

   Single time 
step 

All time 
steps 

Single time 
step 

All time 
steps 

N
o 

R
ot

at
io

n Desktop 46.6 56.1 57.6 35.9 36.0 
VR (1 node) 59.9 59.9 59.9 29.9 29.9 
VR 20.0 15.8 15.4 10.3 10.3 
Mobile 17.9 51.5 9.4 11.9 9.3 

R
ot

at
in

g Desktop 50.0 59.9 59.2 33.0 34.9 
VR (1 node) 59.9 60.0 60.0 29.9 30.0 
VR 16.3 10.7 10.8 7.1 7.2 
Mobile 18.8 47.8 9.7 11.0 8.2 

 
The single computer configurations of the desktop and the single VR node 

provided the best performance in frame rates. Both platforms were able to achieve the 

desired 10 frames per seconds across all five testing conditions. The functional data 

alone was rendered at approximately 60 frames per second for both the Single time step 

and All time steps conditions. Combining the data saw the lowest frame rates at 33 

frames per second for the desktop and 29 frames per second for the single VR node. 

Still above the target goal for real-time interaction. 

The VR and Mobile platforms were not consistently above the desired 10 frames 

per second, but were very close across all conditions. The VR platform failed to meet the 

real-time goal when visualizing the combined condition and around 7 frames per second. 

The mobile platform failed to meet the real-time goal when animating through the time 

steps at just under 10 frames per second. 

The same platforms and conditions were tested using a sampling step size of 

twice the width of a voxel and simulating no user interaction. Using a larger sampling 

step size will increase frame rates at the cost of a less accurate representation. The 

larger sampling size produces a good macro visual, but is not recommended for medical 
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diagnosis. The question then becomes, if the increase in frame rates is significant 

enough to mitigate the lower visual resolution for some situation. 

 

Table 9: Frame Rates for Desktop, VR, and Mobile with double the sampling step size. 
  Structural Functional  Combined  

   Single time 
step 

All time 
steps 

Single time 
step 

All time 
steps 

N
o 

R
ot

at
io

n Desktop 59.675 59.952 60.010 59.938 59.923 
VR (1 node) 59.839 59.949 59.952 59.956 59.951 
VR 30.006 19.997 24.682 20.004 19.933 
Mobile 41.201 60.030 9.641 22.603 9.451 

 
The results of doubling the sampling step size is roughly a doubling of all frame 

rates across all platforms. The doubling of the frame rate is to be expected given the 

number of times the volume is sampled is cut in half. The only exception is the All time 

steps condition for the mobile device that stayed roughly constant. This may indicate that 

there is a bottleneck in the mobile render loop when it comes to switching textures. 

However, these two conditions are the only ones not achieving the real-time interaction 

goal. 

6.5 Discussion 
Application initialization and data loading results show that all platforms are 

capable of loading the 4D functional data in an acceptable time period. The desktop 

application was the fastest at 6.9 second and the mobile application was the longest at 

29.8 seconds. The VR application’s initialization time was over twice that of the desktop 

application at 17.9 seconds. The additional initialization time can be attributed to 

synchronizing the data across the 96 node cluster. 

The mobile application initialization times were not prohibitive to a user at 30 

seconds, but they are not ideal. The decision was made to preload all the volume data 
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into 3D textures in the initialization phase because generating those textures is a time 

consuming process. This allowed the 3D textures to be swapped at run time for the 

functional data instead of generating the 3D textures at run time as needed. In the initial 

stages of prototype development, preloading the textures doubled the frame rates 

across the board when visualizing functional data and was therefore considered an 

acceptable tradeoff. It is important to consider that preloading the textures increases the 

memory footprint of the application, which is not ideal on a mobile device that is already 

memory limited. A large enough medical data set would cause the application to run out 

of memory and crash. 

The frame rate results using the ideal sampling step size indicates that immersive 

VR and mobile devices are not yet capable of consistently performing 4D functional 

volume raycasting in real-time. However, the functional raycasting conditions for both VR 

and mobile were at worst 7.1 frames per second, which is approaching the real-time 

frame rate goal. It is also important to note that all platforms proved capable of 3D 

volume raycasting at real-time frame rates. 

Doubling the sampling step size improved frame rate performance by roughly 

double for the desktop and VR platforms. The mobile All time steps conditions were the 

only conditions unable to achieve the desired frame rates. However, these two 

conditions are close to the 10 frames per second at 9.6 and 9.4 fps respectively. 

Therefore, doubling the sampling step size would recommended for any situation 

requiring looking at gross anatomy. 

There are several techniques that could be applied to improve frame rates that 

were not explored in this research. One being to use octrees [93,94] to provide an 

additional efficiency of empty space skipping, where areas of the volume where no data 

exists could be completely skipped in the resampling stage. Another option would be to 
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reduce the number of rays being cast into the volume, which would have a similar effect 

to increasing the sampling step size. This could be accomplished by casting one quarter 

of the current rays and then scaling up the resulting texture to fill the screen. This would 

reduce the visual quality but would increase frame rates. 

The frame rates on the immersive VR system could be increased by reducing the 

size of the compute cluster. The decrease in performance from the desktop baseline is 

primarily due to the need to synchronize data and frame swapping across multiple 

computers. Decreasing the size of the cluster would decrease the need for 

synchronization. Moving to a single computer head mounted display (HMD) system 

would also eliminate synchronization and improve frame rates closer to the desktop 

results. 

6.6 Conclusions 
This research focused on the feasibility of implementing a real-time 4D volume 

raycasting algorithm on desktop, virtual reality, and mobile platforms. The frame rate 

goal of 10 frames per second was unanimously achieved when visualizing 3D structural 

data. The real-time functional volume raycasting was consistently achieved on the 

desktop and single VR node platforms. However, both the immersive VR and mobile 

platforms are approaching the ability to achieve the desired frame rates consistently, but 

they are not quite there yet. 

All the necessary hardware and software technology is now available in 

commercial devices to perform volume raycasting across these dissimilar computational 

platforms. The historical trend of increases in computational power would indicate that 

consistent real-time functional volume raycasting across all these platforms will be 

possible in the near future. 
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There are still several techniques that could be implemented to improve frame 

rates, like empty space skipping through the use of octree data structures. Another 

possible optimization would be to calculate the difference in brain activity on application 

initialization. This would increase the application initialization time, but would reduce the 

number of textures passed into the shader and eliminate a few graphics operations 

currently needed to perform this calculation at run time. 
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CHAPTER 7: SUMMARY AND FUTURE WORK 
7.1 Summary 

This research investigated the feasibility of creating a generic software capability 

to perform real-time 4D volume rendering on desktop, mobile, and immersive virtual 

reality platforms. Three different prototype applications were built across desktop, 

mobile, and immersive virtual reality platforms. Each used programming languages and 

libraries native to the platform to implement the same volume raycasting pipeline. The 

goal was the achieve real-time performance while providing the same visualization 

features across all three platforms. 

Achieving this goal required addressing four different research issues. The first 

research issue was to explore the feasibility of a generic NIfTI data input capability on 

desktop, VR, and mobile device platforms. The NIfTI Loader, was developed to 

accomplish this. The NIfTI Loader takes in generic NIfTI files and return a C-based data 

array containing the volume data along with a header object defining the parameters of 

the volume. The design allows developers to extend the functionality of the classes to 

return their own datatypes, such as a Metal 3D texture or an OSG Image instead of the 

default C-based array. 

The second research issue was assessing the feasibility of displaying functional 

medical data across desktop, VR, and mobile device platforms. The use of OpenGL and 

Metal shading languages were used to build the same volume raycasting pipeline across 

all three platforms. The results indicate that all three platforms are capable of 

consistently achieving real-time interaction for 3D medical data and are close to 

achieving consistent real-time performance on the VR and mobile devices. 

Improvements in computational power in the next few years should consistently achieve 

real-time interaction. 
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The third research issue was the real-time visualization of a high-resolution 

structural volume and a low-resolution functional volume at the same time. Multi-volume 

rendering is a complex issue with many possible solutions. This research simplified the 

problem by assuming the functional brain activity volume and the structural brain volume 

never moved independently. The volumes could then be aligned and scaled relative to 

each other in 3D space. This allowed the raycasting implementation to sample both 

volumes at the same point in 3D space. A custom compositing method was then used to 

mix the structural and functional data together into a cohesive visualization. 

The fourth research issue was to develop a GPU-based 4D volume raycaster for 

mobile devices supported by the iOS platform. The Metal shading language was used to 

build the iOS based volume raycasting implementation. Previous raycasting research 

achieved less than one frame per second for a single 3D volume [2]. This 

implementation consistently achieved real-time interaction for 3D volumes with better 

than ten frames per second. The 4D functional data was close to achieving consistent 

real-time interaction with frame rates between two and forty frames per second. The 

frame rate performance was dependent on the size of the dataset and whether the 

raycaster was rendering just functional data or a combination of the structural and 

functional data. 

Based on this research, it can be concluded that it is feasible to create a generic 

software capability to perform real-time 4D volume rendering on desktop, mobile, and 

immersive virtual reality platforms. All three platforms were able to consistently achieve 

real-time frame rates when visualizing 3D volumes at frame rates between 18 and 50 

frames per second. The ability to raycast 3D volumes across all three platforms is 

something that was not previously possible. When raycasting 4D volumes, the desktop 

platform was capable of consistently achieving real-time frame rates. The mobile and 



www.manaraa.com

145  

immersive virtual reality platforms were able to achieve real-time frame rates most of the 

time, but it was not consistent. However, with the rates at which computational power 

increases, it is possible to claim that consistent real-time interaction across all three 

platforms is not far off. 

These results indicate that it is feasible to create a generic software capability to 

perform real-time 4D volume rendering on desktop, mobile, and immersive virtual reality 

platforms. All prototypes in this research used the same basic raycasting pipeline to 

achieve the same volume raycasting visualizations, while using very different rendering 

methods on the backend. For example, OpenGL was used for both the desktop and 

immersive VR implementations while Metal was used for the mobile implementation. 

7.2 Future Work 
This research has proven that it is feasible to create a generic software capability 

to perform real-time 4D volume raycasting, but there is still more work that can be done. 

The immersive virtual reality and mobile platforms are still not consistently achieving 

real-time frame rates and therefore, methods to improve rendering efficiency should be 

investigated. Empty space skipping techniques using octrees, kd-trees, or time space 

partitioning (TSP) trees are logical first steps. These methods have shown the ability to 

improve volume rendering speeds by eliminating rendering passes in areas with no data. 

This can be beneficial in medical data where large parts of the volume can be the air 

around the body. 

Another efficiency improvement can be achieved by calculating the difference in 

functional brain activity and storing that in a set of 3D textures upon application 

initialization. A 3D texture would be required to store the difference between the baseline 

activity and the activity for each time step. This would eliminate one texture lookup call 
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and the calculation for the activity difference from the shader program at each sampling 

point. While this might not seem like much, these two operations are performed 

hundreds of times per frame during ray casting in the resampling step. Thus, eliminating 

these calculations would speed up the render. 

Another area of future work would be to expand the different platforms being 

tested. Currently, there are several other sizes and types of mobile devices beyond a 

single 9.7” iPad Pro, specifically smart phones and Android based mobile devices. 

Testing on different hardware and software platforms will be necessary to ensure this 

method works consistently across a range of mobile devices. The immersive virtual 

reality platform used in this research was an excellent testbed because of its large 

computing cluster and networking complexity. However, there are other types of virtual 

reality systems commercially available, including low-cost head mounted displays 

(HMDs). Commercial companies are investing significant resources in these low-cost 

HMDs [34]. A different rendering backend than the current VR prototype would be 

necessary for these HMDs. They divide the single screen in half and render each half 

from that eye’s position. This allows a double buffer graphics card to be used versus the 

immersive VR systmes requiring a quad buffer to generate stereoscopic visuals. 

Another issue with fMRI data is the noise inherent in the data. A threshold was 

used in this research to filter the noise from the brain activity. However, there are better 

filtering methods for noise out there that could improve the visual quality and accuracy of 

the fMRI render. The challenge is in using a method that is computationally efficient 

enough to maintain real-time frame rates. 

The final challenge with this work will be actually building a cross-platform API that 

will use the lessons learned here to improve the adoption of fMRI volume rendering. It 

was stated earlier in this research, that cutting-edge volume rendering advances 
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typically never make it into commercial tools to be used by developers and taken 

advantage of by medical professionals. This research has proven that it is feasible to 

create a generic 4D volume raycasting capability across dissimilar platforms. It is 

possible to incorporate this research into building a single API for cross-platform volume 

raycasting. The API could provide a unified interface for developers to use regardless of 

the hardware and software platforms they are using. Developers could make the same 

function call on any device and achieve the same results. The next step is designing and 

building that API so developers and, ultimately, medical professionals and patients can 

benefit from this game changing technology. 
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